Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x\) (tờ) là số tờ tiền loại 500 ngàn đồng (\(x\in Z^+\))
Gọi \(y\) (tờ) là số tờ tiền loại 100 ngàn đồng \(\left(y\in Z^+\right)\)
Do tổng số tiền là 10 triệu đồng nên ta có phương trình: \(500000x+100000y=10000000\)
\(\Leftrightarrow5x+y=100\) (1)
Do tổng số tờ tiền là 36 nên ta có phương trình: \(x+y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5x+y=100\\x+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=64\\x+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=16\\16+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=16\left(nhận\right)\\y=20\left(nhận\right)\end{matrix}\right.\)
Vậy có 16 tờ tiền loại 500 ngàn đồng và 20 tờ tiền loại 100 ngàn đồng
Gọi số tờ tiền loại 200k và 100k lần lượt là a(tờ) và b(tờ)
(ĐK: \(a,b\in Z^+\))
Số tờ tiền là 15 tờ nên a+b=15(1)
Tổng số tiền là 2200000 nên ta có:
200000a+100000b=2200000
=>2a+b=22(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=15\\2a+b=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-2a-b=15-22\\a+b=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a=-7\\a+b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=15-7=8\end{matrix}\right.\left(nhận\right)\)
Vậy: Số tờ 200K là 7 tờ, số tờ 100K là 8 tờ
p/s: k là nghìn nhé!
Bạn Nam mua món quà giá trị 78000 đồng và được thối lại 1000 đồng => bạn Nam có 79000 đồng.
Ta thấy: Bội số của 5 luôn có tận cùng là 5, bội số của 2 luôn có tận cùng là một số chẵn, mà 79k = 5k (2n + 1) + 4
=> Bạn Nam có 2n + 1 tờ 5k đồng và 2 tờ 2k đồng
=> Số tờ 5 nghìn đồng là: (79k - 4k) : 5 = 15 (tờ)
Vậy bạn Nam có 15 tờ 5 nghìn đồng và 2 tờ 2 nghìn đồng.
kik nha ^v^
Gọi số tiền loại 200 và 100 can rút để đủ 5 triệu là x ,y <tờ > x,y>0 x,y \(\in\)N*
Theo bài ra ta có pt : x+ y = 40 <1>
=> Tổng số tiền 200 nghìn mà Ba Tuấn rút là 200000x đồng
=> Tổng số tiền 100 nghìn mà ba Tuấn rút là 100000y đồng
Theo bài ra ta cso pt :
200000x + 100000y = 5000000
<=> 2x + y = 50 <2>
Từ 1 và 2 ta có hpt \(\left\{{}\begin{matrix}x+y=40\\2x+y=50\end{matrix}\right.\)
Gigi ra ta dc \(\left\{{}\begin{matrix}x=10\\y=30\end{matrix}\right.tm\)
Vậy ...