Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tờ tiền loại 10000đ là x, loại 5000đ là y (x;y nguyên dương)
\(\Rightarrow x+y=30\)
Tổng số tiền bạn Bình có: \(10000x+5000y\) đồng
Tổng số tiền mua bút và tập: \(8.5000+20.8000=200000\left(đ\right)\)
\(\Rightarrow10000x+5000y=200000\)
\(\Rightarrow2x+y=40\)
Ta có hệ pt: \(\left\{{}\begin{matrix}x+y=30\\2x+y=40\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=20\end{matrix}\right.\)
p/s: k là nghìn nhé!
Bạn Nam mua món quà giá trị 78000 đồng và được thối lại 1000 đồng => bạn Nam có 79000 đồng.
Ta thấy: Bội số của 5 luôn có tận cùng là 5, bội số của 2 luôn có tận cùng là một số chẵn, mà 79k = 5k (2n + 1) + 4
=> Bạn Nam có 2n + 1 tờ 5k đồng và 2 tờ 2k đồng
=> Số tờ 5 nghìn đồng là: (79k - 4k) : 5 = 15 (tờ)
Vậy bạn Nam có 15 tờ 5 nghìn đồng và 2 tờ 2 nghìn đồng.
kik nha ^v^
Gọi số tờ tiền loại 200k và 100k lần lượt là a(tờ) và b(tờ)
(ĐK: \(a,b\in Z^+\))
Số tờ tiền là 15 tờ nên a+b=15(1)
Tổng số tiền là 2200000 nên ta có:
200000a+100000b=2200000
=>2a+b=22(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=15\\2a+b=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-2a-b=15-22\\a+b=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a=-7\\a+b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=15-7=8\end{matrix}\right.\left(nhận\right)\)
Vậy: Số tờ 200K là 7 tờ, số tờ 100K là 8 tờ
Gọi số tiền 1 quyển tập lúc chưa giảm giá là x (nghìn đồng) (x>0).(x>0).
Gọi số tiền 1 cây viết lúc chưa giảm giá là y (nghìn đồng) (y>0).(y>0).
Lúc đầu, An dự định mua 30 quyển tập và 10 cây viết hết 340 nghìn đồng nên ta có phương trình:
30x+10y=340(1)
Số tiền mua 1 quyển tập sau khi được giảm giá 10%10% là: x−x.10%=90%x(nghìn đồng)
Số tiền mua 1 cây viết sau được khi giảm 5%5% là: y−y.5%=95%y (nghìn đồng).
An mua 50 quyển tập và 20 cây viết với giá đã được giảm hết 526 nghìn đồng nên ta có phương trình:
50.90%x+20.95%y=526⇔45x+19y=526(2)
Từ (1) và (2) ta có hệ phương trình:
{30x+10y=34045x+19y=526⇔{3x+y=3445x+19y=526⇔{45x+15y=51045x+19y=526⇔{4y=163x+y=34⇔{y=43x+4=34⇔{x=10(tm)y=4(tm)
Vậy giá tiền mỗi quyển tập lúc chưa giảm giá là 10 nghìn đồng, mỗi cây viết lúc chưa giảm giá là 4 nghìn đồng.
Gọi số tiền 1 quyển tập lúc chưa giảm giá là x ( nghìn đồng ) ( x > 0 ).
Gọi số tiền 1 cây viết lúc chưa giảm giá là y ( nghìn đồng ) ( y> 0 ).
Lúc đầu, An dự định mua 30 quyển tập và 10 cây viết hết 340 nghìn đồng nên ta có phương trình:
30x + 10y = 340 (1)
Số tiền mua 1 quyển tập sau khi được giảm giá 10% là :
x - x . 10% = 90%x ( nghìn đồng )
Số tiền mua 1 cây viết sau được khi giảm 5% là :
y - y . 5% = 95%y ( nghìn đồng )
An mua 50 quyển tập và 20 cây viết với giá đã được giảm hết 526 nghìn đồng nên ta có phương trình:
50 . 90%x + 20 . 95%y = 526
⇔ 45x + 19y = 526 (2)
Từ (1) và (2) ta có hệ phương trình:
{30x+10y=34045x+19y=526{30x+10y=34045x+19y=526 ⇔ {3x+y=3445x+19y=526{3x+y=3445x+19y=526 ⇔ {45x+15y=51045x+19y=526{45x+15y=51045x+19y=526 ⇔ {4y=163x+y=34{4y=163x+y=34 ⇔ {y=43x+x=34{y=43x+x=34 {x=10(tm)y=4(tm){x=10(tm)y=4(tm)
Vậy giá tiền mỗi quyển tập lúc chưa giảm giá là 10 nghìn đồng, mỗi cây viết lúc chưa giảm giá là 4 nghìn đồng.
Gọi \(x\) (tờ) là số tờ tiền loại 500 ngàn đồng (\(x\in Z^+\))
Gọi \(y\) (tờ) là số tờ tiền loại 100 ngàn đồng \(\left(y\in Z^+\right)\)
Do tổng số tiền là 10 triệu đồng nên ta có phương trình: \(500000x+100000y=10000000\)
\(\Leftrightarrow5x+y=100\) (1)
Do tổng số tờ tiền là 36 nên ta có phương trình: \(x+y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5x+y=100\\x+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=64\\x+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=16\\16+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=16\left(nhận\right)\\y=20\left(nhận\right)\end{matrix}\right.\)
Vậy có 16 tờ tiền loại 500 ngàn đồng và 20 tờ tiền loại 100 ngàn đồng
Câu 4:
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=180^0\)
Do đó: MAOB là tứ giác nội tiếp
b: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Suy ra:BA\(\perp\)BC
hay OM//CB
Gọi giá tiền quyển vở là \(x\)(\(x\in N\)*)
Gọi giá tiền cây viết là \(y\)(\(y\in N\)*)
Vì bạn Binh mua một quyển vở và một cây viết hết 12000 đồng,nên ta có : \(x+y=12000\left(1\right)\)
Do bạn Binh mua một quyển vở và một cây viết hết 12000 đồng, biết giá tiền của một quyển vở gấp đôi giá tiền của một cây viết, nên ta có : \(x=2y\) \(\Leftrightarrow x-2y=0\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có hpt :
\(\left\{{}\begin{matrix}x+y=12000\\x-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-x+2y=12000\\x+y=12000\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=12000\\x+y=12000\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=4000\\x+y=12000\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=4000\\x+4000=12000\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=4000\left(n\right)\\x=8000\left(n\right)\end{matrix}\right.\)
Vậy giá tiền quyển vở là \(8000\left(đ\right)\)
giá tiền cây viết là \(4000\left(đ\right)\)