Tìm nghiệm nguyên của phương trình xy+yz+zx=xyz+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(\Rightarrow xy+yz+zx\le3xy\)
\(\Rightarrow xyz+2\le3xy\)
\(\Rightarrow xy\left(3-z\right)\ge2>0\)
\(\Rightarrow3-z>0\Rightarrow z< 3\)
\(\Rightarrow z=\left\{1;2\right\}\)
TH1:
\(z=1\Rightarrow xy+x+y=xy+2\)
\(\Leftrightarrow x+y=2\Rightarrow x=y=1\)
\(\Rightarrow\left(x;y;z\right)=\left(1;1;1\right)\)
TH2: \(z=2\Rightarrow xy+2x+2y=2xy+2\)
\(\Rightarrow xy-2x-2y+2=0\)
\(\Rightarrow xy-2x-2y+4=2\)
\(\Rightarrow x\left(y-2\right)-2\left(y-2\right)=2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)=2\) (pt ước số cơ bản)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(4;3;1\right)\)
Vậy nghiệm của pt đã cho là:
\(\left(x;y;z\right)=\left(1;1;1\right);\left(4;3;1\right)\) và các hoán vị của chúng
\(x=y=z=0\)là n0 của pt
xét x,y,z khác 0
\(\frac{5\left(xy+yz+zx\right)}{xyz}=4\)
\(5\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4\)
\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}⋮4\)
ta có \(\left|x\right|\ge1< =>\frac{1}{\left|x\right|}\le1\)
tương tự với 2 cái còn lại
\(\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\le3\)
\(\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\ge\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)
\(< =>\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\le3\)
\(-3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}⋮4\)từ -3 đến 3 chỉ có số 0 chia hết cho 4 mà x,y,z khác 0 (loại)
vậy bộ nghiệm duy nhất của pt là \(x=y=z=0\)
trường hợp 10,5,2 và hoán vị của bộ này vẫn thỏa mãn đề bài mà nhỉ
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
Áp dụng bất đẳng thứ Cauchy (AM-GM):
\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)
Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)
Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\) (1)
Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\) (2)
Và: \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\) (3)
Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)