Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cmr: Nếu tam giác ABC có M là trung điểm của BC và AM =1/2BC thì tam giác ABC vuông tại A
\(AM=\frac{1}{2}BC\)
\(\Rightarrow\)\(AM=MB=MC\)
\(\Delta MBA\)cân tại \(M\)
\(\Rightarrow\)\(\widehat{MAB}=\widehat{B}\) (1)
\(\Delta MAC\) cân tại \(M\)
\(\Rightarrow\)\(\widehat{MAC}=\widehat{C}\) (2)
Lấy (1) + (2) theo vế ta được:
\(\widehat{MAB}+\widehat{MAC}=\widehat{B}+\widehat{C}\)
\(\Leftrightarrow\)\(\widehat{BAC}=\widehat{B}+\widehat{C}\)
\(\Delta ABC\) có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\)\(\widehat{BAC}=90^0\)
Vậy \(\Delta ABC\)\(\perp\)\(A\)
AM=12 BC
⇒AM=MB=MC
ΔMBAcân tại M
⇒^MAB=^B (1)
ΔMAC cân tại M
⇒^MAC=^C (2)
^MAB+^MAC=^B+^C
⇔^BAC=^B+^C
ΔABC có: ^BAC+^B+^C=1800
⇒^BAC=900
Vậy ΔABC⊥A
\(AM=\frac{1}{2}BC\)
\(\Rightarrow\)\(AM=MB=MC\)
\(\Delta MBA\)cân tại \(M\)
\(\Rightarrow\)\(\widehat{MAB}=\widehat{B}\) (1)
\(\Delta MAC\) cân tại \(M\)
\(\Rightarrow\)\(\widehat{MAC}=\widehat{C}\) (2)
Lấy (1) + (2) theo vế ta được:
\(\widehat{MAB}+\widehat{MAC}=\widehat{B}+\widehat{C}\)
\(\Leftrightarrow\)\(\widehat{BAC}=\widehat{B}+\widehat{C}\)
\(\Delta ABC\) có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\)\(\widehat{BAC}=90^0\)
Vậy \(\Delta ABC\)\(\perp\)\(A\)
AM=12 BC
⇒AM=MB=MC
ΔMBAcân tại M
⇒^MAB=^B (1)
ΔMAC cân tại M
⇒^MAC=^C (2)
Lấy (1) + (2) theo vế ta được:
^MAB+^MAC=^B+^C
⇔^BAC=^B+^C
ΔABC có: ^BAC+^B+^C=1800
⇒^BAC=900
Vậy ΔABC⊥A