Cho tam giác cân ABC có \(\widehat{A}\)= 100độ. Tia phân giác góc B cắt AC ở D. Chứng minh BC=BD+AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
Bài 1:
Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)
Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)
Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)
Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)
Xét \(\Delta EAI\) và \(\Delta HAI\) có:
\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)
\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)
\(AI\) chung
\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)
\(\Rightarrow IE=IH\left(1\right)\)
Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)
\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)
2.
Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)
=> BD = BE
Ta có: BD là phân giác ^ABC => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)
(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)
=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)
Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)
=> \(\Delta\)DEC cân tại E => DE = EC (3)
Từ D kẻ vuông góc với BC tại H và BA tại K.
D thuộc đường phân giác ^ABC ( theo t/c đường phân giác ) => DK = DH
Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED
=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )
=> DA = DE (4)
Từ (3) ; (4) => DA = EC
Vậy BC = BE + EC = BD + AD
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
Tren Tia bc lay diem g sao cho bd=bg suy ra tg dbg can tai b suy ra bgd=bdg
Cmd abc=acb=40 do
bd la Tia phan giac cua abc suy ra abd=cbd=20
ta co tg dbg can tai b
ma dbg=20
tu 2 dieu tren cmd bdg=bgd=80
cmd adb=60 suy ra bdc=120
cmd dcg=40
cmd dgc =100
ta co dgc=100 ma dcg =40 cmd tg dgc can tai g suy ra dg =gc
Bạn Luong Ngoc Quynh Nhu ơi bạn làm như vậy ko được bởi vì bạn lấy 2 điểm G, N khác nhau nên ko làm được. Cách này chỉ CM được 1 cái thôi
trên tia BC lấy M,N sao cho góc BDN=6O* , BDM=80*
CM được tam giáC BDN=BDA( g-c-g)
=> AD=DN , góc DNB=DAB=100*
=> DNC=80* = DMB
=> DN=DM =DA=MC(Tự chứng minh)
=>đpcm
Vẽ hình đi bạn nha
làm hộ mk với