tìm các số tự nhiên thỏa mãn \(\left(2^a+1\right)\left(2^a+2\right)\left(2^a+3\right)+2.6^b=992\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (3^a-1).......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)......(3^a-6) :6
=> (3^a-1)......(3^a-6) chẵn
mà 20159 lẻ
nên 2016 lẻ
=> b=0
ta có : (3^a-1) .....(3^a-6) = 1+ 20159
=> (3^a-1) ....(3^a-6)= 20160 =8:7;6;5;4;3
=> 3^a-1= 8
3^a=9
a=2
vậy ..............
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
Giả thiết \(\Leftrightarrow a^2+2a+1+b^2+4b+4+c^2+6c+9\le2010\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(a+2b+3c\right)+14\le2010\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(a+2b+3c\right)\le1996\)
\(\Leftrightarrow2\left(a+2b+3c\right)\le1996-a^2-b^2-c^2\)
Ta có: \(A=ab+b\left(c-1\right)+c\left(a-2\right)\)
\(A=ab+bc+ca-a-2b-3c+a+b+c\)
\(2A=2\left(ab+bc+ca\right)-2\left(a+2b+3c\right)+2\left(a+b+c\right)\)
\(2A\ge2ab+bc+ca+a^2+b^2+c^2+1996+2\left(a+b+c\right)=\left(a+b+c\right)^2+2\left(a+b+c\right)+1-1997\) \(2A\ge\left(a+b+c-1\right)^2-1997\)
\(A\ge-\frac{1997}{2}\)
xét b khác không:
(2^a+1)(2^a+2)(2^a+3) chia hết cho 3
Mà 2.6^b chia hết cho 3
=>Vế trái chia hết cho 3
=>992 chia hết cho 3(vô lí ) (loại)
Vậy b chỉ có thể =0
Thay vào ta được :
(2^a+1)(2^a+2)(2^a+3)= 992 - 2
=>(2^a+1)(2^a+2)(2^a+3)= 9.10.11
=>2^a+1=9
=>2^a=8
=>a=3
BẠN NHỚ