K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!

19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được

Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được

Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)

\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)

=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)

vậy chia hết cho 44

Cách 2:

Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)

Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)

Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy

\(B=19^{19}\left(19^{50}-1\right)\)

do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)

Có: \(19^{50}=8^{50}\left(mod11\right)\)mà 

\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)

Mà (4,11)=1

=> \(19^{69}-19^{19}⋮44\)

=> A chia hết cho 44 (ĐPCM)

20 tháng 2 2017

(19^9) mod 44=0 suy ra 19^19 chia het cho 44

(69^6) mod 44=0 suy ra 69^69 chia het cho 44

suy ra .....19^19+69^69 chia het cho 44

10 tháng 11 2020

19^19+69^19

=(19+69)(19^18-19^17.69+19^16.69^2-..............................-19.69^17+69^18)

=88(19^18+................+69^18) chia hết cho 44

29 tháng 8 2017

Có sai đề ko vậy

29 tháng 8 2017

Đề đúng bạn à, vs mik biết làm rồi. Thank bạn nhiềuvui

5 tháng 10 2019

Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

8 tháng 4 2020

Ta có : 1919+6919

= ( 19 + 69 ) ( 1918- 1917.69 + .... +  6919)

= 88 . ( 1918- 1917.69 + .... +  6919)

= 44 . 2 . ( 1918- 1917.69 + .... +  6919) chia hết cho 44

Vậy 1919 + 6919 chia hết cho 44

học tốt

5 tháng 10 2019

Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

5 tháng 10 2019

Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath