K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Câu hỏi của VO VAN BE SAU - Toán lớp 8 - Học toán với OnlineMath

21 tháng 2 2020

A B C D G H F E K O

Gọi K là giao điểm của AB và EF 

O là giao điểm của AC và BD => OB = OD vì ABCD là hình chữ nhật

Ta có: EK // OB => \(\frac{EK}{OB}=\frac{AE}{AO}\)

          EF//OD => \(\frac{EF}{OD}=\frac{AE}{AO}\)

=> \(\frac{EK}{OB}=\frac{EF}{OD}\) mà OD = OB 

=> EK = EF mặt khác EH = EB ( H đối xứng với B qua E )

=> KBFH là hình bình hành 

=> KB //=HF  ( 1)

Ta lại có: KB //GD ( vì G thuộc DC ; AB //DC ; ABCD là hình chữ nhật )

và GK // BD ( giả thiết )

=> GKBD là hình bình hành

=> KB // = GD ( 2)

Từ ( 1) và (2) => HF // = GD 

=> HFDG là hình bình hành có: ^FDG = 90 độ ( kề bù ^ADC = 90 độ )

=> HFDG là hình chữ nhật 

=> HD = FG ( hai đường chéo bằng nhau)

17 tháng 12 2021

Answer:

a) Gọi I và J là giao điểm các đường chéo của hình chữ nhật MDNF và hình chữ nhật ABCD

Tam giác IND và tam giác JCD là các tam giác cân \(\Rightarrow\widehat{N_1}=\widehat{D_1}\)  và \(\widehat{C_1}=\widehat{D_2}\)

Mặt khác \(\widehat{N_1}=\widehat{D_2}\) (Hai góc đồng vị)

Vậy \(\widehat{C_1}=\widehat{D_1}\Rightarrow DF//AC\)

b) Tứ giác EIDJ là hình bình hành vì có các cạnh đối song song

Có: EJ = ID nhưng IF = ID \(\Rightarrow IF=EJ\)

Từ đó tứ giác EFIJ là hình bình hành \(\Rightarrow FE=IJ\left(1\right)\)

Mặt khác trong tam giác FBD: có FB // IJ (2)

Từ (1) và (2) => điểm E, điểm B, điểm F thẳng hàng

Mà EF = IJ và EB = IJ

=> E là trung điểm BF

C B J D F N E I M A 1 1 2 1

5 tháng 9 2023

a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:

AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)

Từ hai tỉ số trên, ta có:

AC/AD = BE/BD

Vậy, ta đã chứng minh được AF // BD.

b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:

CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)

Vậy, ta đã chứng minh được E là trung điểm CF.

14 tháng 3 2021

Bạn tự vẽ hình nhé

Xét \(\Delta ACD\) có OE // CD(gt)

=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét \(\Delta BCD\) có OF // CD (gt)

=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)

Mặt khác AB // CD nên  \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF

 

12 tháng 8 2019

Giải bài 20 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

31 tháng 1 2016

Tam giác ABD có OE//AB

=>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1) 
Tam giác ABC có OF//AB

=>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2) 
Tam giác ABO có CD//AB

=>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét) 
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3) 
Từ (1) (2) và (3)

=> OE/AB = OF/AB 
=> OE = OF (đpcm.) 

3 tháng 8 2015

      Bạn tự vẽ hình nhé: nhớ **** cho mình với nhé...........

Gọi I và O thứ tự là giao điểm các đường chéo hình chữ nhật KMDN và ABCD.

Ta có: IN=ID=IK=IM   ;    OD=OC=OA=OB.

Do đó: góc N1=D1  ( tam giác NID cân do IN=ID )

          góc D1=C1  ( tam giác DOC cân do OD=OC)

Mà góc N1=D1  ( đồng vị do EN song2 BD. Nên AC song2 KD.

Tứ giác EODI có EO songDI và EI song2 OD nên là hình bình hành.

=> OE=DI mà ID=KI nên OE=KI.

Tứ giác KEOI có KI song2 OE và KI song2 OE nên là hình bình hành.

=>  KE song2 OI                                                                       (1)

Tam giác KDB có OI là đường trung bình nên KB song2 OI           (2)

Từ (1) và (2):=> K,E,B thẳng hàng ( tiên đề Euclide )

22 tháng 11 2015

hướng dẫn cách làm là vẽ hình ra