Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) Gọi I và J là giao điểm các đường chéo của hình chữ nhật MDNF và hình chữ nhật ABCD
Tam giác IND và tam giác JCD là các tam giác cân \(\Rightarrow\widehat{N_1}=\widehat{D_1}\) và \(\widehat{C_1}=\widehat{D_2}\)
Mặt khác \(\widehat{N_1}=\widehat{D_2}\) (Hai góc đồng vị)
Vậy \(\widehat{C_1}=\widehat{D_1}\Rightarrow DF//AC\)
b) Tứ giác EIDJ là hình bình hành vì có các cạnh đối song song
Có: EJ = ID nhưng IF = ID \(\Rightarrow IF=EJ\)
Từ đó tứ giác EFIJ là hình bình hành \(\Rightarrow FE=IJ\left(1\right)\)
Mặt khác trong tam giác FBD: có FB // IJ (2)
Từ (1) và (2) => điểm E, điểm B, điểm F thẳng hàng
Mà EF = IJ và EB = IJ
=> E là trung điểm BF
a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:
AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)
Từ hai tỉ số trên, ta có:
AC/AD = BE/BD
Vậy, ta đã chứng minh được AF // BD.
b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:
CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)
Vậy, ta đã chứng minh được E là trung điểm CF.
Bạn tự vẽ hình nhé: nhớ **** cho mình với nhé...........
Gọi I và O thứ tự là giao điểm các đường chéo hình chữ nhật KMDN và ABCD.
Ta có: IN=ID=IK=IM ; OD=OC=OA=OB.
Do đó: góc N1=D1 ( tam giác NID cân do IN=ID )
góc D1=C1 ( tam giác DOC cân do OD=OC)
Mà góc N1=D1 ( đồng vị do EN song2 BD. Nên AC song2 KD.
Tứ giác EODI có EO song2 DI và EI song2 OD nên là hình bình hành.
=> OE=DI mà ID=KI nên OE=KI.
Tứ giác KEOI có KI song2 OE và KI song2 OE nên là hình bình hành.
=> KE song2 OI (1)
Tam giác KDB có OI là đường trung bình nên KB song2 OI (2)
Từ (1) và (2):=> K,E,B thẳng hàng ( tiên đề Euclide )