Tìm các chữ số a, b, c, m, n, p sao cho abcabcabc-mnpmnpmnp= 20142015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1 đến 9 có (9-1) +1=9(số)=9(chữ số)
Từ 10 đến 99 có (99-10)+1=90(số)=180(chữ số)
Từ 100 đến 999 có (999-100) +1=900(số)=2700(chữ số)
Từ 1000 đến 2015 có (2015-100) +1=1016(số)=4064(chữ số)
Số chữ số của A là: 9+180+2700+4064=6953(chữ số)
a/ Ta có: `2a = 3b => a/3 = b/2`
Đặt `a/3 = b/2 = k` \(\left(k\ne0\right)\)
`=> a = 3k ; b = 2k`
`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)
Vậy `M = 11/38`.
b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015
Vì \(20142015⋮3\) nên \(a^2⋮3\)
\(\Rightarrow a^2⋮3^2\)
\(\Rightarrow a^2⋮9\)
Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)
`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015
\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương (đpcm)
999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 c/s
Bài 1
Gọi số thứ 2889 là n
Theo đề bài ta có :
(n-13):1+1=2889
(n-13):1 =2889-1
(n-13):1 =2888
n-13 =2888.1
n-13 =2888
n =2888+13
n =2901