K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2\)

\(\le\left(1+1\right)\left(n+a+n-a\right)\)

\(=2\cdot2n=4n\)

\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}>\sqrt{4n}=2\sqrt{n}\)

NV
1 tháng 8 2020

Ta có:

\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)

\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)

....

\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)

Nhân vế với vế:

\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)

\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)

Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài

NV
13 tháng 1 2024

- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn

- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)

Do \(\alpha\) là nghiệm nên:

\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)

\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)

\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)

\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)

\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)

\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)

TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)

TH2: Nếu \(\left|\alpha\right|>1\)

\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)

\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)

31 tháng 7 2018

Ta có: \(\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(\dfrac{1}{16}=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)

................

\(\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)

\(\dfrac{1}{9}+\dfrac{1}{16}+......+\dfrac{1}{\left(2n+1\right)^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{2n.\left(2n+1\right)}\)

= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{2n}-\dfrac{1}{2n+1}\)

= \(\dfrac{1}{2}-\dfrac{1}{2n+1}\)

= \(\dfrac{2n+1-2}{2n+1}\)

= \(\dfrac{2n-1}{2n+1}\)= \(1-\dfrac{2}{2n+1}\)

Ta có: n ≥ 1⇒ 2n+1 ≥ 3

\(1-\dfrac{2}{2n+1}\)\(\dfrac{1}{3}\)

hình như đề sai thì phải

NV
25 tháng 8 2020

Trên nửa đoạn \([-2;-1)\) \(\Rightarrow y=-3x-1\) có hệ số \(a=-3< 0\) nên nghịch biến

\(\Rightarrow\) Ko tồn tại \(y_{min}\) trên miền này

Trên \(\left[-1;0\right]\Rightarrow y=x+3\) hàm đồng biến

\(\Rightarrow\min\limits_{[-1;1)}y=y\left(-1\right)=2\)

Vậy \(y_{min}=2\)