Tìm tất cả các số nguyên n để các biểu thức sau là số nguyên:
a) F=\(\frac{n+10}{2n-8}\)(n khác 4)
b) G=\(\frac{n-1}{3n-6}\)(n khác 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Lời giải:
Với $n$ là số tự nhiên, để $G$ nguyên thì:
$n+10\vdots 2n-8$
$\Rightarrow n+10\vdots n-4$
$\Rightarrow n-4+14\vdots n-4$
$\Rightarrow 14\vdots n-4$
$\Rightarrow n-4\in \left\{1; -1; 2; -2; 7; -7; 14; -14\right\}$
$\Rightarrow n\in \left\{5; 3; 6; 2; 11; -3; 18; -10\right\}$
Do $n$ tự nhiên nên $n\in\left\{5; 3; 6; 2; 11;18\right\}$
Thử lại thấy $n\in \left\{6; 2; 18\right\}$
b) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
Các câu còn lại tương tự, mình để lại đáp án nhé:
c) \(n\in\left\{-2;-4\right\}\)
d) \(n\in\left\{-2;-1;3;5\right\}\)
e) \(n\in\left\{0;-2;2;-4\right\}\)
f) \(n\in\left\{0;2;-6;8\right\}\)
1.viết tập hợp các số nguyên x,biết:
18/6 <hoặc=x<hoặc=144/72
-30/5<x<-45/9
2.tìm số nguyễn lớn nhất sao cho
x<-13/3
x<hoặc = -49/7
chi tiết ra giúp mình nhé
cảm ơn nhìu
A nguyên thì 3n+4 chia hết cho 2n+1
=>6n+8 chia hết cho 2n+1
=>6n+3+5 chia hết cho 2n+1
=>\(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
câu a là vô tận
b)Vì \(\frac{3n+4}{n-2}\in Z\Rightarrow3n+4⋮n-2\Rightarrow3n-6+10⋮n-2\)
\(\Rightarrow10⋮n+2\Rightarrow n+2\inƯ\left(10\right)\)
đến đó bạn tự làm nhé
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ
a ) để F thuộc Z
=> \(\frac{n+10}{2n-8}\)thuộc Z
=> n + 10 \(⋮\)2n - 8
=> 2 . ( n + 10 ) \(⋮\)2n - 8
=> 2n + 20 \(⋮\)2n - 8
=> 2n - 8 + 28 \(⋮\)2n - 8 mà 2n - 8 \(⋮\)2n - 8 => 28 \(⋮\)2n - 8
=> 2n - 8 thuộc Ư ( 28 ) = { - 28 ; - 14 ; - 7 ; - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
=> n thuộc { - 10 ; - 3 ; 2 ; 3 ; 5 ;6 ; 11 ; 18 }