cho a và b nguyên tố cùng nhau. chứng minh a+b và ab nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là 1 ước nguyên tố của ab,a+b thế thì ab chia hết cho d và a+b cũng như thế
Vì ab chia hết cho d nên a hoặc b chia hết cho d﴾vì d là số nguyên tố﴿.
Giả sử a chia hết cho d mà a+b chia hết cho d nên b chia hết cho d
=> d là ước nguyên tố của a và b, trái với đề bài cho a và b nguyên tố cùng nhau hay ƯCLN﴾a,b﴿=1
Vậy ...............
Giả sử an + bn và ab là 2 số nguyên tố cùng nhau.
=> an + bn và ab cùng chia hết cho 1 số nguyên tố d.
=> an + bn + ab chia hết cho d.
=> a(an-1 + b) + bn chia hết cho d.
=> a(an-1 + b) chia hết cho d.
=> a chia hết cho d (1).
=> an-1 + b chia hết cho d => b chia hết cho d (2).
Từ (1) và (2) => a, b cùng chia hết cho 1 số nguyên tố d (trái với giả thiết a, b là 2 số nguyên tố cùng nhau).
=> an + bn và ab không là 2 số nguyên tố cùng nhau.
Mình nhầm:
Giả sử an + bn không là 2 số nguyên tố cùng nhau. Còn kết quả bạn ghi lại cái đpcm
Giải
Giả sử d là ước nguyên tố của ab và a+b.
=> ab chia hết cho d và a+b chia hết cho d.
Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)
Do vai trò của a và b bình đẳng nên:
Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)
=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1
=> d=1(trái với d là số nguyên tố)
Do đó ab và a+b không thể có ước nguyên tố chung.
=> ƯCLN(ab,a+b)=1
Vậy ƯCLN(ab,a+b)=1
Giả sử \(d\) là ước nguyên tố của \(ab\) và \(a+b\).
\(\Rightarrow\) \(ab⋮d\) và \(a+b⋮d\)
Vì \(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)
Do vai trò của \(a\) và \(b\) bình đẳng nên:
Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))
\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)
\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)
Do đó \(ab\) và \(a+b\) không thể có ước nguyên tố chung.
\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)
Vậy \(ƯCLN\left(ab,a+b\right)=1\)
a) Gọi d ∈ ƯC (a, a + b) ⇒ (a + b) - a ⋮ d ⇒ b ⋮ d. Ta lại có a ⋮ d nên d ∈ ƯC (a, b), do đó d =1 (vì a, b là hai số nguyên tố cùng nhau). Vậy (a, a + b) = 1.
Đặt d \(\in\) ƯC(a ; a + b) \(\Rightarrow\) a chia hết cho d và a + b chia hết cho d.
\(\Rightarrow\) (a + b) - a chia hết cho d \(\Rightarrow\) b chia hết cho d.
Ta có: a chia hết d và b chia hết cho d \(\Rightarrow\) d \(\in\) ƯC(a ; b) , do đó d = 1 (vì a và b là hai số nguyên tố cùng nhau)
Vậy ƯCLN(a ; a + b) = d = 1 nên a và a + b là hai số nguyên tố cùng nhau
Giải
Giả sử d là ước nguyên tố của ab và a+b.
=> ab chia hết cho d và a+b chia hết cho d.
Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)
Do vai trò của a và b bình đẳng nên:
Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)
=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1
=> d=1(trái với d là số nguyên tố)
Do đó ab và a+b không thể có ước nguyên tố chung.
=> ƯCLN(ab,a+b)=1
Vậy ƯCLN(ab,a+b)=1
tick nha!
toan lop 1 gi kho qua vay
day la toan 6 ma!