[ 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/9900 ] : x = 1/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25-1}{100}=\frac{24}{100}=\frac{6}{25}\)
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
k mình nha !
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Vậy...
Giải
\(A=1+2+3+4+5+...+99+100\)
Số số hạng của A là: \(\left(100-1\right)\div1+1=100\)(số hạng)
Tổng A là: \(\frac{\left(100+1\right)\times100}{2}=5050\)
Vây A=5050
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(B=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{99\cdot100}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}-\frac{1}{100}\)
\(A=\frac{6}{25}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\\ =\frac{24}{100}=\frac{6}{25}\)
= 1-1/2.3-1/3.4-....-1/99.100
= 1-1/2+1/3-1/3+1/4-......-1/99+1/100
= 1-1/2+1/100
= 51/100
Tk mk nha
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(\cdot\) LÀ DẤU \(\times\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)
A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{99}{100}\)
Giúp mình với !!!!!!! One k ^_^
Ta có \(\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\right):x=\frac{1}{5}\)
\(\left(\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{99\times100}\right):x=\frac{1}{5}\)
\(\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right):x=\frac{1}{5}\)
\(\left(\frac{1}{3}-\frac{1}{100}\right):x=\frac{1}{5}\)
\(\frac{97}{300}:x=\frac{1}{5}\)
\(x=\frac{97}{300}:\frac{1}{5}\)
\(x=\frac{97}{60}\)