K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

dư \(x^{25}\) à ?? t ko biết đâu nhé xDDD

17 tháng 7 2018

gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:

\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)

với x = 1 thì: a + b = 5 (1)

với x = -1 thì: -a + b = -5 (2)

từ (1); (2) => b = 0; a = 5

=> số dư của phép chia là 5x

17 tháng 7 2018

Gọi Q(x) là thương và ax + b là số dư của phép chia trên, ta có:

x + x+ x+ x27 + x81 = (x- 1) . Q(x) + ax + b

Với x = 1 thì a + b = 5(1)

Với x = -1 thì -a + b = -5(2)

Từ (1) : (2) => a = 5; b = 0

=> Số dư phép chia là: 5x

26 tháng 9 2020

Số dư là 05...

31 tháng 8 2020

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm  

AH
Akai Haruma
Giáo viên
21 tháng 8

Lời giải:
Theo định lý Bê-du về phép chia đa thức, thương của $f(x)$ khi chia cho $q(x)=x-1$ là:

$f(1)=1^3+1^9+1^{27}+1^{243}=4$