Cho a,b,c thỏa mãn
a+b+c=1
a.b.c=1
tìm gtnn của a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P = a + b + c ≤ a + b + a + b = 2(a + b) ≤ 2(-1) = -2
Ta cũng có:
P = a + b + c ≤ a + b + c - 2abc ≥ a + b + c - 2(-1)(-1)(-1) = -3
Vậy GTNN của P = -3 và GTLN của P = -2.
\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)
\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
`A=(a+1/b)(b+1/a)`
`=ab+1+1+1/(ab)`
`=2+ab+1/(16ab)+15/(16ab)`
Áp dụng cosi
`=>ab+1/(16ab)>=1/2`
`ab<=(a+b)^2/4=1/4`
`=>16ab<=4`
`=>15/(16ab)>=15/4`
`=>A>=15/4+1/2+2=25/4`
Dấu "=" xảy ra khi `a=b=1/2`
\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)
\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)
\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)
\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)
Đẳng thức xảy ra khi a=b=c=1/3.
Vậy GTNN của P là 33.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\
\geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\
=\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\
=18+\frac{1}{2(ab+bc+ac)}\)
Áp dụng BĐT AM-GM:
$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$
$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$
$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$
\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
\(=a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi a=b=1/2.
Vậy MinA=1/2.
(bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) thì bạn tự c/m nhé)
Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b+c=y>0\end{matrix}\right.\) \(\Rightarrow xy=1\)
\(A=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}\)
\(=\dfrac{1}{\left(x-y\right)^2}+x^2+y^2-2xy+2xy\)
\(=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}}+2=4\)