Tìm x :
3 * ( x + 1) + 5 * ( x+ 2 ) = 93
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2*(x+3)+3*(x+4)+4*(x+5)-8*x=93
2*x+2*3+3*x+3*4+4*x+4*5-8*x =93
(2*x+3*x+4*x-8*x)+(2*3+3*4+4*5)=93
x*(2+3+4-8)+(6+12+20) =93
x*1+38 =93
x =93-38
x =55
11
n+32n−2=n−4+72n−2=2(n−2)+72n−2=2+72n−2n+32n-2=n-4+72n-2=2(n-2)+72n-2=2+72n-2
Để n+32n−2n+32n-2 thì 7⋮2n−27⋮2n-2
⇒2n−2∈Ư(7)∈{±1;±7}⇒2n-2∈Ư(7)∈{±1;±7}
2n−2=1⇒n=1,52n-2=1⇒n=1,5
2n−2=−1⇒n=0,52n-2=-1⇒n=0,5
2n−2=7⇒n=4,52n-2=7⇒n=4,5
2n−2=−7⇒n=−2,52n-2=-7⇒n=-2,5
Vì n∈Z⇒n∈Z⇒ Không có giá trị n thõa mãn
Bài 4:
a: xy=-2
=>\(x\cdot y=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)
=>\(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
b: \(\left(x-1\right)\left(y+2\right)=-3\)
=>\(\left(x-1\right)\cdot\left(y+2\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1=-1\cdot3=3\cdot\left(-1\right)\)
=>\(\left(x-1;y+2\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-5\right);\left(-2;-1\right);\left(0;1\right);\left(4;-3\right)\right\}\)
Bài 3:
a: \(x\left(x+9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+9=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b: \(\left(x-5\right)^2=9\)
=>\(\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3+5=8\\x=-3+5=2\end{matrix}\right.\)
c: \(\left(7-x\right)^2=-64\)
mà \(\left(7-x\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
Bài 2:
a: \(\left(-31\right)\cdot x=-93\)
=>\(31\cdot x=93\)
=>\(x=\dfrac{93}{31}=3\)
b: \(\left(-4\right)\cdot x=-20\)
=>\(4\cdot x=20\)
=>\(x=\dfrac{20}{4}=5\)
c: \(5x+1=-4\)
=>\(5x=-4-1=-5\)
=>\(x=-\dfrac{5}{5}=-1\)
d: \(-12x+1=-4\)
=>\(-12x=-4-1=-5\)
=>\(12x=5\)
=>\(x=\dfrac{5}{12}\)
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
a; \(\dfrac{93}{17}\): \(x\) + (- \(\dfrac{21}{17}\)) : \(x\) + \(\dfrac{22}{7}\): \(\dfrac{22}{3}\) = \(\dfrac{5}{14}\)
\(\dfrac{94}{17}\) \(\times\) \(\dfrac{1}{x}\) - \(\dfrac{21}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17x}\) = \(\dfrac{5}{14}\) - \(\dfrac{3}{7}\)
\(\dfrac{72}{17x}\) = - \(\dfrac{1}{14}\)
17\(x\) = 72.(-14)
17\(x\) = - 1008
\(x\) = - 1008 : 17
\(x\) = - \(\dfrac{1008}{17}\)
Vậy \(x\) \(=-\dfrac{1008}{17}\)
b; - \(\dfrac{32}{27}\) - (3\(x\) - \(\dfrac{7}{9}\))3 = - \(\dfrac{24}{27}\)
- \(\dfrac{32}{27}\) + \(\dfrac{24}{27}\) = (3\(x\) - \(\dfrac{7}{9}\))3
(3\(x-\dfrac{7}{9}\))3 = - \(\dfrac{8}{27}\)
(3\(x-\dfrac{7}{9}\))3 = (- \(\dfrac{2}{3}\))3
3\(x-\dfrac{7}{9}\) = - \(\dfrac{2}{3}\)
3\(x\) = - \(\dfrac{2}{3}\) + \(\dfrac{7}{9}\)
3\(x\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) : 3
\(x\) = \(\dfrac{1}{27}\)
Vậy \(x=\dfrac{1}{27}\)
1. Áp dụng TCDTSBN ta có:
$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$
$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$
$\Rightarrow x-1=y-2=z+5=0$
$\Rightarrow x=1; y=2; z=-5$
2.
Có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$
Suy ra:
$x+1=2.1=2\Rightarrow x=1$
$y+3=1.4=4\Rightarrow y=1$
$z+5=6.1=6\Rightarrow z=1$
$
3 * x + 3 + 5 * x + 10 =93
8 * x = 93 - 13
8 * x = 80
x = 80 / 8 =10