Cho góc xOy=120 độ, điểm A thuộc tia phân giác của góc xOy. K ẻ AB vuông góc với Ox ( B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc O y). Tam giác ABC là tam giác gì
CM Tam giác BOC cân
AO VUÔNG GÓC VỚI BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét 2 tam giác vuông AOC và AOB, ta có :
+ Góc COA bằng góc BOA ( vì OA là tia phân giác của góc xOy )
+ OA là cạnh huyền chung
=> Tam giác AOC bằng AOB ( CH_GN ) => CA = CB ( 2 cạnh tương ứng ) => CAB là tam giác cân tại A
- Trong tam giác cân CAB ta có góc CAB bằng 60 độ ( Vì góc CAO bằng 180 độ trừ cho tổng hai góc AOC + OCA hay nói cách khác là góc CAO = 180 - ( 60 + 90 ) = 30
+ Mà góc CAO bằng góc BAO => góc BAO bằng 30 độ
+ Có ( góc ) CAO + BAO = CAB = 60 độ )
- Vì CAB là tam giác cân có một góc bằng 60 độ suy ra tam giác CAB là tam giác đều
Xét ΔABO vuông tại B và ΔACO vuông tại C có
OA chung
\(\widehat{BOA}=\widehat{COA}\)
Do đó: ΔABO=ΔACO
Suy ra: AB=AC
hay ΔABC cân tại A
mà \(\widehat{CAB}=180^0-120^0=60^0\)
nên ΔABC đều
Bài này mình biết làm nhưng không biết vẽ hình trên máy tính
a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OM chung
\(\widehat{HOM}=\widehat{KOM}\)
Do đó: ΔOHM=ΔOKM
b: ta có: ΔOHM=ΔOKM
nên MH=MK
hay ΔMHK cân tại M
c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)
nênΔMHK đều
Ta có hình vẽ:
Δ OBA vuông tại B có: A1 + O1 = 90o (1)
Δ OCA vuông tại C có: A2 + O2 = 90o (2)
Từ (1) và (2) lại có: O1 = O2 vì OA là phân giác của BOC
=> A1 = A2
Xét Δ OBA và Δ OCA có:
A1 = A2 (cmt)
OA là cạnh chung
O1 = O2 (cmt)
Do đó, Δ OBA = Δ OCA (c.g.c)
=> AB = AC (2 cạnh tương ứng)
=> Δ ABC là tam giác cân tại A
Hình thím tự vẽ:
(tại cái bài lúc nãy đang làm gần xong cái tự nhiên "Ôi hỏng!!")
Gọi M là giao điểm của OA và BC
-Xét tam giác OAB và tam giác OAC có:
\(\widehat{AOB}\)=\(\widehat{AOC}\) (GT)
OA: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\)=900 (GT)
=> tam giác OAB = tam giác OAC
(theo trường hợp cạnh huyền góc nhọn)
Ta có: OA là phân giác góc O
\(\widehat{AOB}\)=\(\widehat{AOC}\) = \(\frac{1}{2}\)\(\widehat{O}\) = \(\frac{1}{2}\)1200 = 600
Trong tam giác OAB có:
\(\widehat{O}\)+\(\widehat{A}\)+\(\widehat{B}\)=1800 (tổng 3 góc trong tam giác)
hay 600 + góc A + 900 = 1800
=> \(\widehat{A}\) = 300
Vì tam giác OAB = tam giác OAC
nên \(\widehat{OAB}\)=\(\widehat{OAC}\)=300
-Xét tam giác ABM và tam giác ACM có:
AM: cạnh chung
\(\widehat{BAM}\)=\(\widehat{CAM}\) (tam giác OAB = tam giác OAC)
AB = AC (tam giác OAB = tam giác OAC)
=> tam giác ABM = tam giác ACM (c.g.c)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
Trong tam giác ABM có:
\(\widehat{BAM}\)+\(\widehat{ABM}\)+\(\widehat{AMB}\)=1800 (tổng 3 góc của tam giác)
hay 300 + góc ABM + 900 = 1800
=> \(\widehat{ABM}\)=600
Vì tam giác ABM = tam giác ACM
nên \(\widehat{ABM}\)=\(\widehat{ACM}\)=600 (2 góc tương ứng)
Ta có: \(\widehat{BAM}\)+\(\widehat{CAM}\)=300+300=600
Trong tam giác ABC có:
\(\widehat{BAC}\)=\(\widehat{ABC}\)=\(\widehat{ACB}\)=600
=> tam giác ABC là tam giác đều
Vậy tam giác ABC là tam giác đều
"Sorry, hôm nay tớ bực bội wa"
\(\Delta BOA\)vuông tại B có: BOA + OAB = 90o
\(\Delta COA\)vuông tại C có: COA + OAC = 90o
Mà BOA = COA vì OA là tia phân giác của BOC
=> OAB = OAC
Xét \(\Delta BOA\) và \(\Delta COA\) có:
BOA = COA (cmt)
OA là cạnh chung
BAO = CAO (cmt)
Do đó, \(\Delta BOA=\Delta COA\left(c.g.c\right)\)
=> AB = AC (2 cạnh tương ứng)
Như vậy tam giac ABC cân tại A
Bài 8:
a: Xét ΔOBA vuông tại B và ΔOCA vuông tại C có
OA chung
góc BOA=góc COA
=>ΔOBA=ΔOCA
=>AB=AC
b: OB=OC
AB=AC
=>OA là trung trực của BC
=>OA vuông góc với BC
c: góc BAC=360-90-90-120=60 độ
Xét ΔBAC có BA=BC và góc BAC=60 độ
nên ΔBAC đều