Tim GTNN cua bieu thuc sau:A=(6 - 3x) - 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Tìm GTNN của \(C=x^2-3x+2017\)
Ta có:
\(C=x^2-3x+2017\)
\(C=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}+2014\)
\(C=\left(x-\frac{3}{2}\right)^2+2014\frac{3}{4}\ge2014\frac{3}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(Min_C=2014\frac{3}{4}\Leftrightarrow x=\frac{3}{2}\)
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
B = |x - 2| + |x - 6| + 5
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |x - 2| + |x - 6| + 5 = |x - 2| + |6 - x| + 5
B ≥ |x - 2 + 6 - x| + 5 = 4 + 5 = 9
Dấu "=" xảy ra <=> (x - 2)(x - 6) ≥ 0
<=> 2 ≤ x ≤ 6
Vậy gtnn của B là 9 tại 2 ≤ x ≤ 6
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10