Hình thang ABCD, O là 1 điểm nằm trong hình thang.CMR : SAOB + SCOD = SACD + SBOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{S_{BOC}}{S_{COD}}=\frac{OB}{OD}\); \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\)
\(\Rightarrow\frac{S_{BOC}}{S_{COD}}=\frac{S_{AOB}}{S_{AOD}}\Rightarrow S_{BOC}.S_{AOD}=S_{AOB}.S_{COD}\)
Lại có : \(S_{ABCD}=S_{AOB}+S_{COD}+\left(S_{BOC}+S_{AOD}\right)=S_{AOB}+S_{COD}+2\sqrt{S_{BOC}.S_{AOD}}=S_{AOB}+S_{COD}+2\sqrt{S_{AOB}.S_{COD}}=\left(\sqrt{S_{AOB}}+\sqrt{S_{COD}}\right)^2\)( Vì \(S_{BOC}=S_{AOD}\))
Mặt khác : \(S_{ABCD}=\left(\sqrt{S_{AOB}}+\sqrt{S_{COD}}\right)^2=\left(1.\sqrt{S_{AOB}}+1.\sqrt{S_{COD}}\right)^2\le2\left(S_{AOB}+S_{COD}\right)\Rightarrow S_{AOB}+S_{COD}\ge\frac{1}{2}.S_{ABCD}\)(ĐPCM)
Ta có : \(\frac{OA}{OC}=\frac{S_{AOB}}{S_{BOC}}\) và \(\frac{OA}{OC}=\frac{S_{AOD}}{S_{OCD}}\)
\(\Rightarrow\frac{S_{AOB}}{S_{BOC}}=\frac{S_{AOD}}{S_{OCD}}\)\(\Rightarrow S_{AOB}.S_{OCD}=S_{AOD}.S_{BOC}=S_1.S_2=S^2_1=S_2^2\)
Lại có : \(S=S_{AOB}+S_{BOC}+S_{COD}+S_{AOD}=S_1+S_2+2\sqrt{S_1.S_2}=\left(\sqrt{S_1}+\sqrt{S_2}\right)^2\)
\(\Rightarrow\sqrt{S}=\sqrt{S_1}+\sqrt{S_2}\) (đpcm)
Tự vẽ hình
Qua M dựng đường thẳng đường thẳng song song với AD cắt AB tại I , cắt CD tại H
Dựng MK song song với AB cắt BC tại K . HJ song song với MA cắt AD tại J
Tứ giác IJHK là cần tìm
Theo cách dựng ta thấy :
\(\widehat{IMK}=\widehat{IHC}\) ( 2 góc đồng vị ; MK // CD )
\(\widehat{IHC}=\widehat{ADC}\) ( 2 góc đồng vị )
\(\widehat{ADC}=\widehat{BCD}\) ( ABCD - hình thang cân )
\(\widehat{BKM}=\widehat{BCD}\) ( 2 góc đồng vị )
\(\Rightarrow\)\(\widehat{IHC}=\widehat{BCD}\left(=\widehat{ADC}\right)\)
\(\Rightarrow\)\(\widehat{IMK}=\widehat{BKM}\)
Do đó : MIBK và MHCK là 2 hình thang cân
\(\Rightarrow\)\(BM=IK\)
\(CM=HK\)
* Hình thang MAJH có MH // AJ và MA // HJ Nên JH = MA
* Hình thang MDJI có IJ // MD và MI // ID
Vậy tứ giác IJHK nội tiếp hình thang cân có các cạnh JH = MA ; IK = MB ; HK = MC ; IJ= MD ( đpcm )