Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng phân số n+1/n+2 là phân số tối giản với n thuộc tập hợp số nguyên,n không bằng -2
\(\frac{n+1}{n+2}\)tối giản \(n\ne-2\)
Gọi ƯCLN(n+1;n+2) là d
n +1 chia hết cho d
n +2 chia hết cho d
<=> (n+2)-(n+1 ) = 1 chia hết cho d
=> 1 chia hết cho d nên d = 1
=> ƯCLN(n+1;n+2) = 1
Gọi ƯC(n+1,n+2)là d(d là số tự nhiên khác 0,n là số nguyên,n khác -2)
=>n+1\(⋮\)d và n+2 chia hết cho d
=>(n+2)-(n+1)chia hết cho d
=>1 chia hết cho d mà d là STN khác 0
=>d =1
=>\(\frac{n+1}{n+2}\)là phân số tối giản(đpcm)
\(\frac{n+1}{n+2}\)tối giản \(n\ne-2\)
Gọi ƯCLN(n+1;n+2) là d
n +1 chia hết cho d
n +2 chia hết cho d
<=> (n+2)-(n+1 ) = 1 chia hết cho d
=> 1 chia hết cho d nên d = 1
=> ƯCLN(n+1;n+2) = 1
Gọi ƯC(n+1,n+2)là d(d là số tự nhiên khác 0,n là số nguyên,n khác -2)
=>n+1\(⋮\)d và n+2 chia hết cho d
=>(n+2)-(n+1)chia hết cho d
=>1 chia hết cho d mà d là STN khác 0
=>d =1
=>\(\frac{n+1}{n+2}\)là phân số tối giản(đpcm)