Cho a,b,c >0. CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\).
Mọi người giúp mk nha ! Cảm ơn trước!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét a = b = c = 1 thì thỏa mãn bài ra
Xét a ,b,c khác 1. do a,b,c có vai trò như nhau nên giả sử \(a\le b\le c\)
Áp dụng BĐT cô-si cho 3 số a+b+1,1-a,1-b, ta có :
\(\left(a+b+1\right)\left(1-a\right)\left(1-b\right)\le\left(\frac{a+b+1+1-a+1-b}{3}\right)^3=1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\le\frac{1}{a+b+1}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\frac{1-c}{a+b+1}\)
Mà \(\frac{a}{b+c+1}\le\frac{a}{a+b+1};\frac{b}{a+c+1}\le\frac{b}{a+b+1}\)
\(\Rightarrow\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\le\frac{a}{a+b+1}+\frac{b}{a+b+1}+\frac{c}{a+b+1}\)
do đó : \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\le\frac{a+b+c}{a+b+1}+\frac{1-c}{a+b+1}=1\)
dấu " = " xảy ra khi a = b = c = 0
vậy ...
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm
Đẳng thức xảy ra khi \(a=b=c\)
b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Cách làm tương tự câu a.
c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)
d) Em làm biếng quá anh làm nốt đi:P
a/ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế :
\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
b/ \(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)
\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{b+2c+a}\)
\(\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{4}{c+b+2a}\)
Cộng theo vế :
\(2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
viết thư gửi mẹ ở trên trời:
Hà Nội, ngày...tháng....năm.....
"Chắc ở nơi nào đó, mẹ cũng vui vì nhìn thấy con hạnh phúc và trưởng thành hơn. Cũng lâu lắm rồi, con không lên thắp hương cho mẹ, con thật có lỗi. Sống ở đây, con được ba lo cho rất đầy đủ, nhưng đôi khi con lại muốn cảm giác được mẹ chăm sóc khi còn nhỏ hơn, ước gì có thể quay ngược lại thời gian để con ngập tràn trong phút giây đó.
Con vẫn chưa nói 'Con yêu mẹ' được và đây là điều hối tiếc nhất trong cuộc đời con. Nhưng con biết mẹ sẽ hiểu được tấm lòng của con vì con ít khi thể hiện sự yêu thương bằng lời nói mà chỉ thể hiện bằng những thành quả mà con đạt được.
Mọi chuyện đều do định mệnh nên mẹ đừng buồn, cả nhà luôn yêu thương mẹ. Nếu có kiếp sau con muốn làm con của mẹ một lần nữa.
Yêu mẹ! Chúc mẹ luôn hạnh phúc ở phương xa".
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
<=> (a+b)^2 >= 4ab ( cộng mỗi vế thêm 2ab )
Với a,b > 0 thì chia cả 2 vế cho ab.(a+b) được :
a+b/ab >= 4/a+b
<=> 1/a + 1/b >= 4/a+b
Tương tự : 1/b + 1/c >= 4/b+c ; 1/c + 1/a >= 4/c+a
=> 2.(1/a+1/b+1/c) >= 4.(1/a+b + 1/b+c + 1/c+a)
<=> 1/a + 1/b + 1/c >= 2.(1/a+b + 1/b+c + 1/c+a)
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
Tk mk nha