cmr bình phương thiếu của tổng hai số nguyên chia hết cho 9 thì tích của hai số ấy cũng chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số nguyên đó là a, b ta có:
\(a^2+ab+b^2⋮9\) ta viết thành: \(\left(a-b\right)^2+3ab⋮9\Rightarrow\left(a-b\right)^2+3ab⋮3\)
Ta có:
\(3ab⋮3\Rightarrow\left(a-b\right)^2⋮3\Rightarrow a-b⋮3\Rightarrow\left(a-b\right)^2⋮9\Rightarrow3ab⋮9\Rightarrow ab⋮3\)
ab chia hết cho 3 => có 1 số chia hết cho 3.
Mà a-b chia hết cho 3 nên 2 số có cùng số dư khi chia cho 3.
Vậy a,b chia hết cho 3 hay ab chia hết cho 9 (Q.E.D) => ĐPCM
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
Trả lời
dễ mà gọi 2 số đó là x;y(x;yZ)
ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Vì \(x+y⋮3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)
\(\Rightarrow x^3+y^3⋮3\)( đpcm )