Bài 1. Cho Δ DEF vuông tại D (DE>DF), đường phân giác FI (I thuộc DE). Trên tia FE lấy
điểm P sao cho FP=FD. Chứng minh rằng:
a) Δ IDF= Δ IPF
b) So sánh EP và EI
c) FI là đường trung trực của đoạn thẳng DP. Qua P vẽ đoạn thẳng PQ vuông góc với EI sao
cho EQ=EP. Chứng minh rằng ∠ IQD= ∠ IDQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
=>BD là trung trực của AH
c: HD=DA
DA<DK
=>HD<DK
Xét Δ ADB và Δ EDB có:
\(BDcạnhchung\)
\(\widehat{BAD}=\widehat{BED}\)
\(\widehat{ABD}=\widehat{EBD}\)
=> Δ ADB = Δ EDB
Ta có:
AB = BE
=> △BAE cân tại B
Trong △BAE cân tại B có:
BD là đường phân giác
=> BD là đường cao
=> BD ⊥ AE
Xét △ADF và △ ADC có:
\(\widehat{ADF}=\widehat{EDC}\)
AD = DE
\(\widehat{FAD}=\widehat{CED}\)
=> △ADF = △ ADC
=> FD = CD (2 cạnh tương ứng)
Ta có:
AF = AB + AF
BC = BE + EC
AB = BE
AF = EC
nên AF = BC
=> △FBC cân tại B
Trong △FBC cân tại B có:
BD là đường phân giác
=> BD là đường cao
=> BD ⊥ FC
Ta có:
BD ⊥ AE
BD ⊥ FC
=> AE // FC