Giải phương trình: \(\sqrt{2\sqrt{3}-3}=\sqrt{x\sqrt{3}}-\sqrt{y\sqrt{3}}\) trong đó x,y là các số hữu tỉ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ
Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ
Lấy (2) - (1) và (2) + (1) ta được
\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)
Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\) (\(\sqrt{x}+\sqrt{y}-1>0\))
\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)
\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)
Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên
\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên (1)
Ta lại có:
\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)
Lấy (1) + (2) và (1) - (2) ta có:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)
\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên
Vậy x, y là bình phương đúng của 1 số nguyên.
\(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
\(\Leftrightarrow\sqrt{2-\sqrt{3}}=\sqrt{3x}-\sqrt{y}\Leftrightarrow2-\sqrt{3}=3x+y-2\sqrt{3xy}\)
\(\Leftrightarrow3x+y-2=2\sqrt{3xy}-\sqrt{3}\)(1)
Để phương trình đầu có nghiệm hữu tỉ=> phương trình (1) có nghiệm hữu tỉ x,y
\(\Rightarrow\hept{\begin{cases}2\sqrt{3xy}-\sqrt{3}=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{xy}-1=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=\frac{1}{4}\\y=2+3x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(2-3x\right)=\frac{1}{4}\\y=2-3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12x^2-8x+1=0\\y=2-3x\end{cases}}\)
phân tích thành nhân tử r làm tiếp nhé
\(ĐKXĐ:x\ge0;y\ge0\)
Ta có:\(pt\Rightarrow2\sqrt{3}-3=\sqrt{3}x+\sqrt{3}y-6xy\)
\(\Leftrightarrow\sqrt{3}\left(x+y-2\right)=3\left(2xy-1\right)\)
\(\Leftrightarrow x+y-2=\sqrt{3}\left(2xy-1\right)\)
Nếu \(2xy-1\ne0\),ta có:
\(\Rightarrow\sqrt{3}=\frac{x+y-2}{2xy-1}\inℚ\left(L\right)\)
Do đó:2xy-1=0,từ đó suy ra x+y-2=0,do đó ta có hệ phương trình:
\(\hept{\begin{cases}2xy-1=0\\x+y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{1}{2}\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{1}{2}\\x=2-y\end{cases}\Leftrightarrow\left(2-y\right)y=\frac{1}{2}}\)
\(\Leftrightarrow y^2-2y+\frac{1}{2}=0\Leftrightarrow\left(y-1\right)^2=\frac{1}{2}\Rightarrow\orbr{\begin{cases}y-1=\frac{1}{\sqrt{2}}\\y-1=-\frac{1}{\sqrt{2}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=1+\frac{1}{\sqrt{2}}\Rightarrow x=1-\frac{1}{\sqrt{2}}\\y=1-\frac{1}{\sqrt{2}}\Rightarrow x=1+\frac{1}{\sqrt{2}}\end{cases}}\left(TM\right)\)
Vậy tập nghiệm của pt là:\(\left(x,y\right)=\left\{\left(1-\frac{1}{\sqrt{2}};1+\frac{1}{\sqrt{2}}\right),\left(1+\frac{1}{\sqrt{2}};1-\frac{1}{\sqrt{2}}\right)\right\}\)