K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

hhe4af00xe1ed1x0đz

21 tháng 8 2016

 bai 1 : ta có a+b+c=0=>(a+b+c)^2=0
=>a^2+b^2+c^2+2ab+2ac+2bc=0
=>1+2(ab+bc+ac)=0(vì a^2+b^2+c^2=1)
=>ab+bc+cd=-1/2
=>(ab+bc+cd)^2=1/4
=>a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=1/4
=>a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)=1/4
=>a^2b^2 +a^2c^2+b^2c^2=1/4(vì a+b+c=0)*
mặt khác a^2+b^2+c^2=1(gt)
=>(a^2+b^2+c^2)^2=1
=>a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1
=>a^4+b^4+c^4+2(a^2b^2+a^2c^2+b^2c^2)=1
=>a^4+b^4+c^4+2.1/4=1(theo *)
=>a^4+b^4+c^4=1- 1/2=1/2(dpcm)

mk chi giai dc nhu v thoi

b: \(27D=3^{14}+3^{17}+...+3^{2024}\)

\(\Leftrightarrow26D=3^{2024}-3^{11}\)

hay \(D=\dfrac{3^{2024}-3^{11}}{26}\)

c: \(25E=-5^4-5^6-...-5^{1002}\)

\(\Leftrightarrow24E=-5^{1002}+5^2\)

hay \(E=\dfrac{-5^{1002}+5^2}{24}\)

16 tháng 1 2022

sai nha

 

24 tháng 4 2020

T = 500^2 - 499^2 + 498^2 - 497^2 +...+2^2 -1^2

= 2( 500^2 + 498^2 + 496^2 +...+2^2 ) - ( 1^2 + 2^2 +3^2 + 4^2 +...+498^2 + 499^2) 

= 2.4 ( 1^2 + 2^2 + 3^2 + ...+249^2 + 250^2) - ( 1^2 + 2^2 +3^2 + 4^2 +...+498^2 + 499^2) 

\(=8.\frac{250\left(250+1\right)\left(2.250+1\right)}{6}-\frac{500\left(500+1\right)\left(2.500+1\right)}{6}\)

\(=\frac{500\left(500+1\right)}{6}\left(4.\left(250+1\right)-\left(2.500+1\right)\right)\)

= 250 ( 500 + 1)= 125250

8 tháng 10 2023

A= 2001000

B= 10100

C= 62500

 

8 tháng 10 2023

\(A=1+2+3+4+5+...+2000\)

Số phần tử trong dãy: \(\dfrac{2000-1}{1}+1=2000\)

Tổng của dãy trên: \(A=(2000+1)\cdot2000:2=2001000\)

\(B=2+4+6+8+10+...+200\)

Số phần tử trong dãy: \(\dfrac{200-2}{2}+1=100\)

Tổng của dãy trên: \(B=(200+2)\cdot100:2=10100\)

\(C=1+3+5+7+9+...+499\)

Số phần tử trong dãy: \(\dfrac{499-1}{2}+1=250\)

Tổng của dãy trên: \(C=(499+1)\cdot250:2=62500\)

1 tháng 8 2020

a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)

\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)

c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)

\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)

1 tháng 8 2020

d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)

\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)

\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)

\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)

e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)

\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)

g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)

17 tháng 9 2016

Nhận xét:4 số đầu và 4 số cuối triệt tiêu lẫn nhau.Làm tương tự với các số ở trong ta sẽ rút gọn dần chúng.Do 998 chia 8 dư 6 nên còn dư lại 6 số ở giữa không rút gọn được.Trước số đầu tiên đó có (998-6)/2 tức có 496 số.Vậy số bắt đầu là 497.Nhận xét 497 chia 4 dư 1 nên dấu của nó là dấu cộng.Tức tổng dãy này là 497 công 498 trừ 499 trừ 500 cộng 501 cộng 502 tức bằng 497 cộng 502 bằng 999

25 tháng 7 2019

E = 501^2 + 503^2 + 496^2 và F = 499^2 + 497^2 + 504^2

Xét E - F

= 501^2 + 503^2 + 496^2 -( 499^2 + 497^2 + 504^2 )

= 501^2 + 503^2 + 496^2 - 499^2 - 497^2 - 504^2

= ( 501^2 - 499^2 ) + ( 503^2 - 497^2 ) - ( 504^2 - 496^2 )

= ( 501 + 499 ).( 501 - 499 ) + ( 503 - 497 ).( 503 + 497 ) - ( 504 - 496 ).( 504 + 496)

= 1000.2 + 1000.6 - 1000.8

= 1000.( 2 + 6 - 8 )

= 1000.0

= 0 

=> E = F 

Chúc bn hc tốt <3

7 tháng 12 2017

Lời giải chi tiết:

2 = 1 + 1

6 = 2 + 4

8 = 5 + 3

10 = 8 + 2

3 = 1 + 2

6 = 3 + 3

8 = 4 + 4

10 = 7 + 3

4 = 3 + 1

7 = 6 + 1

9 = 8 + 1

10 = 6 + 4

4 = 2 + 2

7 = 5 + 2

9 = 7 + 2

10 = 5 + 5

5 = 4 + 1

7 = 4 + 3

9 = 6 + 3

10 = 10 + 0

5 = 3 + 2

8 = 7 + 1

9 = 5+ 4

10 = 0 + 10

6 = 5 + 1

8 = 6 + 2

10 = 9 + 1

1 = 0 + 1

19 tháng 1 2021

2=1+1          6=2+4          8=5+3          10=8+2

3=1+2          6=3+3          8=4+4          10=7+3

4=3+1          7=6+1          9=8+1          10=6+4

4=2+2          7=5+2          9=7=2          10=5+5

5=4+1          7=4+3         9=6+3           10=10+0

5=3+2          8=7+1         9=5=4           10=0+10

6=5+1          8=6=2         10=9+1         1=0+1