Cho đoạn thẳng BC. Trên cùng một nửa mặt phẳng bờ là đường thẳng BC vẽ các tia Bx, Cy cắt nhau tại A sao cho góc CBx = 2 x góc BCy. Kẻ AH vuông góc với BC. Trên tia đối của tia Bx lấy điểm E sao cho BE = BH. Gọi D là giao điểm của EH và AC.Chứng minh tam giác HDC và tam giác ADH cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta BEH\)có BE = BH\(\Rightarrow\Delta BEH\)cân tại B\(\Rightarrow\widehat{E}=\widehat{H_1}\)
\(\widehat{B_1}\)là góc ngoài của\(\Delta BEH\Rightarrow\widehat{B_1}=\widehat{E}+\widehat{H_1}\Rightarrow2\widehat{C}=2\widehat{H_1}\Rightarrow\widehat{C}=\widehat{H_1}\)mà\(\widehat{H_1}=\widehat{H_2}\)(đối đỉnh)\(\Rightarrow\widehat{H_2}=\widehat{C}\)
\(\Rightarrow\Delta HDC\)cân tại D
\(\Delta AHC\)vuông tại H có\(\widehat{HAC}+\widehat{C}=90^0\)mà\(\widehat{H_2}+\widehat{H_3}=\widehat{AHC}=90^0;\widehat{H_2}=\widehat{C}\Rightarrow\widehat{HAC}=\widehat{H_3}\)
\(\Rightarrow\Delta ADH\)cân tại D
b)\(\Delta AHB,\Delta AHB'\)vuông tại H có AH chung ; HB = HB' (H là trung điểm BB')\(\Rightarrow\Delta AHB=\Delta AHB'\left(2cgv\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{B'_1}\)(2 góc tương ứng)\(\Rightarrow\Delta ABB'\)cân tại A
c)\(\widehat{B'_1}\)là góc ngoài\(\Delta AB'C\)nên\(\widehat{B'_1}=\widehat{A_1}+\widehat{C}\Rightarrow\widehat{A_1}=\widehat{B'_1}-\widehat{C}=\widehat{B_1}-\widehat{C}=2\widehat{C}-\widehat{C}=\widehat{C}\)
\(\Rightarrow\Delta AB'C\)cân tại B' => B'C = AB' = AB (\(\Delta ABB'\)cân tại A) mà HB' = BH = BE
=> B'C + HB' = AB + BE hay HC = AE
TA có BH=BE (gt) => tam giác BEH cân tại B
=> \(\widehat{BEH}=\widehat{BHE}\) \(\Rightarrow\widehat{ABC}=2\widehat{BHE}\) mà \(\widehat{ABC}=2\widehat{ACB}\left(gt\right)\)\(\Rightarrow\widehat{BHE}=\widehat{ACB}\)
mà\(\widehat{BHE}=\widehat{DHC}\)(2 góc đối đỉnh)\(\Rightarrow\widehat{DHC}=\widehat{DCH}\Rightarrow\Delta DHC\)cân tại D
Mặt khác\(\widehat{AHD}+\widehat{DHC}=\widehat{HAC}+\widehat{DCH}=90^o\)mà \(\widehat{DHC}=\widehat{DCH}\Rightarrow\widehat{AHD}=\widehat{HAC}\Rightarrow\Delta AHD\)cân tại D