TÍNH HỢP LÍ
3-32+33-34+...-32016+32017-32018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1 + 32 + 34 + … + 32018
32.B = 32.( 1 + 32 + 34 + … + 32018)
9B = 32 + 34 + 36 + … + 32020
9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)
8B = 32020 – 1
B = (32020 – 1) : 8.
Vậy B = (32020 – 1) : 8.
\(3B=3+3^2+3^3+...+3^{2019}\\ 2B=3^{2019}-1\\ B=\dfrac{3^{2019}-1}{2}\)
\(9B=3^2+3^4+...+3^{2020}\)
\(\Leftrightarrow8B=3^{2018}-1\)
\(\Leftrightarrow B=\dfrac{3^{2018}-1}{8}\)
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(2A=2^2+2^3+2^4+...+2^{2018}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)
\(A=2^{2018}-2\)
b) \(C=1+3^2+3^4+...+3^{2018}\)
\(3^2\cdot C=3^2+3^4+3^6+...+3^{2020}\)
\(9C-C=\left(3^2+3^4+3^6+...+3^{2020}\right)-\left(1+3^2+3^4+...+3^{2018}\right)\)
\(8C=3^{2020}-1\)
\(\Rightarrow C=\dfrac{3^{2020}-1}{8}\)
\(Toru\)
Ta có: \(S=1+3^1+3^2+3^3+...+3^{2017}+3^{2018}\)
\(=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(=13+3^3\cdot13+...+3^{2016}\cdot13\)
\(=13\cdot\left(1+3^3+...+3^{2016}\right)⋮13\)(đpcm)
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
3A=3+3^2+3^3+....+3^2020
3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
2A= 3^2020-1
⇒ A =( 3^2020-1):2
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
⇒3A=3+3^2+3^3+....+3^2020
⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
⇒2A= 3^2020-1
⇒ A =( 3^2020-1):2
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
Đặt A là tên biểu thức
A=3-32+33-34+...-32016+32017-32018
3A=32-33+34-35+...+32018-32019
A+3A=(3-32+33-34+...+32017-32018)+(32-33+34-35+...+32018-32019)
4A=3-32019
A=\(\frac{3-3^{2019}}{4}\)