K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Đặt A là tên biểu thức

A=3-32+33-34+...-32016+32017-32018

3A=32-33+34-35+...+32018-32019

A+3A=(3-32+33-34+...+32017-32018)+(32-33+34-35+...+32018-32019)

4A=3-32019

A=\(\frac{3-3^{2019}}{4}\)

10 tháng 7 2021

Đặt A = 1 + 32 + 34 +...+ 32018

\(\Rightarrow\) 32A = 9A = 32 + 34 + 36 + ... + 32020

\(\Rightarrow\) 9A - A = 8A = 32020 - 1

\(\Rightarrow\) A = \(\dfrac{3^{2020}-1}{8}\)

Vậy 1 + 32 + 34 +...+ 32018  =  \(\dfrac{3^{2020}-1}{8}\)

16 tháng 8 2023

B = 1 + 32 + 34 + … + 32018

32.B = 32.( 1 + 32 + 34 + … + 32018)

9B = 32 + 34 + 36 + … + 32020

9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)

8B = 32020 – 1

B = (32020 – 1) : 8.

Vậy B = (32020 – 1) : 8.

16 tháng 8 2023

tick cho mink nhé (●'◡'●)

26 tháng 9 2021

\(3B=3+3^2+3^3+...+3^{2019}\\ 2B=3^{2019}-1\\ B=\dfrac{3^{2019}-1}{2}\)

\(9B=3^2+3^4+...+3^{2020}\)

\(\Leftrightarrow8B=3^{2018}-1\)

\(\Leftrightarrow B=\dfrac{3^{2018}-1}{8}\)

18 tháng 10 2023

a) \(A=2+2^2+2^3+...+2^{2017}\)

\(2A=2^2+2^3+2^4+...+2^{2018}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)

\(A=2^{2018}-2\)

b) \(C=1+3^2+3^4+...+3^{2018}\)

\(3^2\cdot C=3^2+3^4+3^6+...+3^{2020}\)

\(9C-C=\left(3^2+3^4+3^6+...+3^{2020}\right)-\left(1+3^2+3^4+...+3^{2018}\right)\)

\(8C=3^{2020}-1\)

\(\Rightarrow C=\dfrac{3^{2020}-1}{8}\)

\(Toru\)

Ta có: \(S=1+3^1+3^2+3^3+...+3^{2017}+3^{2018}\)

\(=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)

\(=13+3^3\cdot13+...+3^{2016}\cdot13\)

\(=13\cdot\left(1+3^3+...+3^{2016}\right)⋮13\)(đpcm)

10 tháng 12 2020

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

14 tháng 10 2021

\(A=1+3+3^2+3^3+...+3^{2018}+3^{2019}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{2018}\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)\) ⋮4

⇒A⋮4

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$