K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)

Dấu "=" xảy ra khi: x = y =z

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\) 

Dấu "=" xảy ra khi a = b = c

14 tháng 1 2018

bạn ơi vì sao \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

4 tháng 2 2017

Ta có: 

\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

\(\ge a^4b^2c^2+b^4c^2a^2+c^4a^2b^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Cái bất đẳng thức áp dụng trong bài là:

\(x^2+y^2+z^2\ge xy+yz+zx\)

4 tháng 2 2017

  ĐẶt 2^a = x; 2^b=y; 2^c=z;=> x;y;z>0 

dpcm<=> x^3+y^3+z^3 ≥x+y+z và xyz = 2^a.2^b.2^c =2^(a+b+c)=1 

Ta có: x^3+y^3 = (x+y)(x²+y²-xy).Vì x²+y² ≥ 2xy => x^3+y^3 ≥xy(x+y) 

Tương tự ta có: y^3+z^3≥ yz(y+z) 

z^3+ x^3≥ xz(x+z) 

Cộng vế với vế ta có: 

2(x^3+y^3+z^3) ≥ x²y+ xy² + y²z+yz²+x²z+xz² 

Cộng 2 vế với x^3+y^3 +z^3 ta có: 

3(x^3+y^3+z^3) ≥ x²(x+y+z) + y²(x+y+z) + z²(x+y+z) = (x+y+z)(x²+y²+z²) (*) 

Theo cô si ta có: 

x²+y²+z² ≥3.(x².y².z²)^1/3 = 3 (vì xyz=1) 

=> 3(x^3+y^3+z^3) ≥ 3(x+y+z) 

=> x^3+y^3+z^3 ≥ x+y+z 

=> dpcm 

27 tháng 2 2018

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

Ta sẽ chứng minh: \(a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(ab+bc+ac\right)\) (*)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta có: \(bdt\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Tiếp tục có: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+x^2z^2\)

Ta sẽ chứng minh: \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

Áp dụng bất đẳng thức AM-GM:\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xzy^2\\y^2z^2+z^2x^2\ge2\sqrt{y^2z^4x^2}=2xyz^2\\x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2yzx^2\end{matrix}\right.\)

Cộng theo vế: \(x^2y^2+y^2z^2+z^2x^2\ge xzy^2+xyz^2+yzx^2=xyz\left(x+y+z\right)\)

Vậy (*) đúng

Vậy bất đẳng thức cần chứng minh đúng

5 tháng 10 2017

Chị cx học Tê Tiêu ạ,A mấy ạ

5 tháng 10 2017

A1 em ạ

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV

4 tháng 2 2018

\(BDT\Leftrightarrow\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\ge\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+a}+\dfrac{1}{2c+a+b}\)

Áp dụng BĐT \(\dfrac{1}{nht}+\dfrac{1}{is}+\dfrac{1}{the}+\dfrac{1}{best}\ge\dfrac{16}{nht+is+the+best}\):

\(\dfrac{1}{2a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VP\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\)

\("="\Leftrightarrow a=b=c\)

12 tháng 3 2020

Chứng minh tương đương là xong nha

\(\Leftrightarrow a^2b^2+2ab^2c+b^2c^2\le2a^2b^2+2b^2c^2\)

\(\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\)

\(\Leftrightarrow\left(ab-bc\right)^2\ge0\)luôn đúng

dấu = khi a=c

_Kudo_

13 tháng 3 2020

Áp dụng bđt Bunhiacopski:

\(2\left(a^2b^2+b^2c^2\right)=\left(1+1\right)\left(a^2b^2+b^2c^2\right)\ge\left(ab+bc\right)^2\)

Dấu "=" khi a = c

14 tháng 1 2021

Không có mô tả.P/S : sư phụ em tuổi già sức yếu , cầm cây bút cũng viết không nổi :v

14 tháng 1 2021

bài này mình nghĩ chắc giả sử á , cũng chưa thử ((: 

để tí hỏi sư phụ xem đã