K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Đặt tổng trên là A

Có : 3A = 1.2.3+2.3.3+....+n.(n+1).3

= 1.2.3+2.3.(4-1)+......+n.(n+1).[(n+2)-(n-1)]

= 1.2.3+2.3.4-1.2.3+.....+n.(n+1).(n+2)-(n-1).n.(n+1)

= n.(n+1).(n+2)

=> A = n.(n+1).(n+2)/3

Tk mk nha

13 tháng 1 2018

Đặt A=1.2+2.3+...+n(n+1)

3A=1.2.3+2.3.3+...+n(n+1).3

3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n+2)-(n-1)]

3A=1.2.3-0.1.2+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=[1.2.3+2.3.4+...+n(n+1)(n+2)]-[0.1.2+1.2.3+...+(n-1)n(n+1)]

3A=n(n+1)(n+2)-0.1.2

3A=n(n+1)(n+2)

A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

13 tháng 1 2018

Đặt A là tên biểu thức

A=1.2.3+2.3.4+...+n(n+1)(n+2)

4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4

4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)

4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]

4A=n(n+1)(n+2)(n+3)-0.1.2.3

A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)

\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

14 tháng 7 2018

=1-1/2+1/2-1/3+1/3-1/4+.....+1/n-1/n+1

=1-1/n+1

=n/n+1

14 tháng 7 2018

Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .

= 1 - 1/ n + 1 .

= n+1 / n+1 - 1/ n+1 .

= n/ n+1 .

Đáp sô : n/ n+1

15 tháng 3 2015


Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
 A=1.2+2.3+3.4+4.5+...+49.50
 3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
 3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
 3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
 3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
 3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
 3.A=49.50.51
 A=\(\frac{49.50.51}{3}\)49.50.513
 A=\(\frac{49.50.17.3}{3}\)49.50.17.33
 A=49.50.17
 A=41650
Đáp số : A=41650

15 tháng 3 2015

3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+49.50.(51-48)

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-48.49.50+49.50.51

=49.50.51

=124950

27 tháng 4 2016

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

\(A=\frac{1}{9}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(A=\frac{1}{9}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=\frac{1}{9}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{9}.\frac{99}{100}\)

\(A=\frac{11}{100}\)

27 tháng 4 2016

A = 9/1.2 + 9/2.3 + 9/3.4 +...+ 9/98.99 + 9/99.100

   = 9. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)

   = 9. (1 - 1/100)

   = 9 . 99/100

   = 891/100

   

14 tháng 2 2016

=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)

=9.(1/1-1/2+1/2-1/3+1/3-1/4+....+1/98-1/99+1/99-1/100)

=9.(1/1-1/100)

=9-9/100

=891/100

12 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{200}-\frac{1}{201}\)

\(=1-\frac{1}{201}\)

\(=\frac{200}{201}\)

12 tháng 7 2016

 \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)

\(=1-\frac{1}{201}=\frac{200}{201}\)

Ủng hộ nha,tớ ko ăn cóp đâu.

10 tháng 8 2018

100 số hạng đầu là

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)

ta có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}\)\(=\frac{100}{101}\)

2:

A=-(1/4-1/5+1/5-1/6+...+1/9-1/10)

=-(1/4-1/10)

=-1/4+1/10

=-5/20+2/20=-3/20