Tính giá trị của tổng sau : \(1.2+2.3+3.4+...+n.\left(n+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A là tên biểu thức
A=1.2.3+2.3.4+...+n(n+1)(n+2)
4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4
4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)
4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]
4A=n(n+1)(n+2)(n+3)-0.1.2.3
A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)
\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .
= 1 - 1/ n + 1 .
= n+1 / n+1 - 1/ n+1 .
= n/ n+1 .
Đáp sô : n/ n+1
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A=\(\frac{49.50.51}{3}\)49.50.513
A=\(\frac{49.50.17.3}{3}\)49.50.17.33
A=49.50.17
A=41650
Đáp số : A=41650
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=\frac{1}{9}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{9}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{9}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{9}.\frac{99}{100}\)
\(A=\frac{11}{100}\)
A = 9/1.2 + 9/2.3 + 9/3.4 +...+ 9/98.99 + 9/99.100
= 9. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
= 9. (1 - 1/100)
= 9 . 99/100
= 891/100
=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)
=9.(1/1-1/2+1/2-1/3+1/3-1/4+....+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9-9/100
=891/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{200}-\frac{1}{201}\)
\(=1-\frac{1}{201}\)
\(=\frac{200}{201}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)
\(=1-\frac{1}{201}=\frac{200}{201}\)
Ủng hộ nha,tớ ko ăn cóp đâu.
100 số hạng đầu là
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)
ta có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}\)\(=\frac{100}{101}\)
2:
A=-(1/4-1/5+1/5-1/6+...+1/9-1/10)
=-(1/4-1/10)
=-1/4+1/10
=-5/20+2/20=-3/20
Đặt tổng trên là A
Có : 3A = 1.2.3+2.3.3+....+n.(n+1).3
= 1.2.3+2.3.(4-1)+......+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4-1.2.3+.....+n.(n+1).(n+2)-(n-1).n.(n+1)
= n.(n+1).(n+2)
=> A = n.(n+1).(n+2)/3
Tk mk nha
Đặt A=1.2+2.3+...+n(n+1)
3A=1.2.3+2.3.3+...+n(n+1).3
3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n+2)-(n-1)]
3A=1.2.3-0.1.2+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=[1.2.3+2.3.4+...+n(n+1)(n+2)]-[0.1.2+1.2.3+...+(n-1)n(n+1)]
3A=n(n+1)(n+2)-0.1.2
3A=n(n+1)(n+2)
A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)