Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{200}-\frac{1}{201}\)
\(=1-\frac{1}{201}\)
\(=\frac{200}{201}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)
\(=1-\frac{1}{201}=\frac{200}{201}\)
Ủng hộ nha,tớ ko ăn cóp đâu.
a) Gọi số hạng thứ 50 của tổng là: n
Ta có:
( n - 7 ) : 5 + 1 = 50
( n - 7 ) : 5 = 50 - 1
( n - 7 ) : 5 = 49
n - 7 = 49 x 5
n - 7 = 245
n = 245 + 7
n = 252
Vậy số đó là: 252
b) Tổng của 50 số hạng đầu tiên là:
( 252 + 7 ) x 50 : 2 = 6475
Đ/S: a: 252
b: 6475
Số hang thứ 50 là : ( 50 - 1 ) x 5 + 7 = 252
Dãy số đó có số số hạng là : ( 252 - 7 ) : 5 +1 = 50 ( số )
Tổng của dãy số hạng là : ( 252 + 7 ) x 50 : 2 = 6475
Bài 2:
A=7+11+15+....+203(SSH của tổng là:(203-7):4+1=50)
A=(7+203)X50:2
A=210X50:2
A=5250
B=6+11+16+....301(SSH của tổng là:A=(301-6):5+1=40)
B=(6+301)X40:2
B=307X20
B=6140
Bài 7:
a)Số hạng thứ 100 của tổng là:
(5+3).(100-1)=792
b)Tổng 100 sô hạng đầu tiên là:
(5+792).100:2=39850
Thừa số thứ nhất của mẫu số của phân số thứ 100 là:
\(\left(100-1\right):1+1=100\)
=> Mẫu số của phân số thứ 100 là 100.101
Tổng 100 số hạng đầu tiên:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) Ta xét mẫu số của các số hạng trong dãy :
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
........
Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:
\(\left(100-1\right).5+1=496\)
=> Mẫu của phân số thứ 100 là 496.501.
Tính tổng 100 số hạng đầu:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{500}{501}\)
100 số hạng đầu là
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)
ta có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}\)\(=\frac{100}{101}\)