cho tam giác abc vuông tại a tia phân giác góc c cắt cạnh AB tại D vẽ DE vuông BC tại E
cm a<tam giác DEA và tam giác CEA
b>tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là biết vẽ hình=)) a,Xét tam giác ADE và tam giác ADF có: góc AED= góc AFD=90 độ AD chung góc EAD= góc DAF(AD là phân giác của BAC) => tam giác ade= tam giác ADF(cạnh huyền-góc nhọn) a2,Xét tam giác ABC có AD vừa là đường phân giác vừa là đường trung tuyến=>tam giác abc cân tại a
góc ABD+góc ADB=90 độ
góc EBD+góc EDB=90 độ
mà góc ABD=góc EBD
nên góc ADB=góc EDB
=>góc HDB=góc HBD
=>ΔHBD cân tại H
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
Xét ΔABD vuông tại A
ΔEBD vuông tại E
CÓ : BD : CẠNH HUYỀN CHUNG
\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)
⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)
C)XÉT ΔDAI VUÔNG TẠI A
ΔDEC VUÔNG TẠI E
CÓ: \(\widehat{A}=\widehat{E}\)(GT)
AD=CD(ΔABD= ΔEBD)
\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)
⇒ΔDAI=ΔDEC (G-C-G)
⇒DI = CD
⇒ΔIDC CÂN TẠI D
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)