K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

\(\Leftrightarrow DE^2=23.04\)

hay DE=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:

\(DA^2=DE\cdot DF\)

\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)

Ta có: DE+EF=DF(E nằm giữa D và F)

nên EF=DF-DE=7,5-4,8=2,7(cm)

Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:

\(AD^2=AE^2+DE^2\)

\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)

hay AE=3,6(cm)

Xét ΔAEF vuông tại E và ΔABC vuông tại B có 

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)

Ta có: AF+FB=AB(F nằm giữa A và B)

nên BF=AB-AF=8-4,8=3,2(cm)

a) Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABD=ΔACD(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

mà tia AD nằm giữa hai tia AB,AC

nên AD là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABD=ΔACD(cmt)

nên DB=DC(hai cạnh tương ứng)

Ta có: DB=DC(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra A,M,D thẳng hàng(đpcm)

 

 

 

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0
23 tháng 12 2023

a: Ta có: DB\(\perp\)AB

AC\(\perp\)AB

Do đó: DB//AC

Xét ΔECA có DB//AC

nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

b: Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)

Xét ΔAEI có DB//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)

Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)

=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)

Từ (1),(2),(3) suy ra EI=EK

10 tháng 3 2023

Kẻ `KI ⊥ BC(I in BC)`

Đặt `BG` là p/g của góc ngoài tại `hat(ABC)` 

`CH` là p/g của góc ngoài tại `hat(ACB)`

+, Có : `BG` là p/g của góc ngoài tại `hat(ABC)` 

`=>hat(B_1)=hat(B_2)`

mà `hat(B_1)=hat(B_3);hat(B_2)=hat(B_4)` ( đối đỉnh )

nên `hat(B_3)=hat(B_4)`

+, Có : `CH` là p/g của góc ngoài tại `hat(ACB)` 

`=>hat(C_1)=hat(C_2)` 

mà `hat(C_1)=hat(C_3);hat(C_2)=hat(C_4)` ( đối đỉnh )

nên `hat(C_3)=hat(C_4)`

Xét `Delta BEK` và `Delta BIK` có :

`{:(hat(F)=hat(I_1)(=90^0)),(KB-chung),(hat(B_3)=hat(B_4)(cmt)):}}`

`=>Delta BEK=Delta BIK(c.h-g.n)`

`=>KE=KI` ( 2 cạnh t/ứng ) (1)

Xét `Delta KIC` và `Delta KEC` có :

`{:(hat(I_2)=hat(E)(=90^0)),(KC-xhung),(hat(C_3)=hat(C_4)(cmt)):}}`

`=>Delta KIC=Delta KEC(c.h-g.n)`

`=> KI=KE` ( 2 cạnh t/ứng ) (2)

Từ (1) và (2) `=>KF=KE(=KI)(đpcm)` 

a: BD\(\perp\)BA

CA\(\perp\)BA

Do đó: BD//CA

Xét ΔEAC có BD//AC

nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)

b:

AC//BD

BD//IK

Do đó: AC//IK

Xét ΔAEI có BD//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)

Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)

\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)

=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)

Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)

=>EI=EK