K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow ad=bc\)

Xét tích : ( a - b ) . c = ac - bc = ac - ad = c . ( c - d )

Vậy ( a - b ) . c = c . ( c - d ) \(\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có: \(\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\)

          \(\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\)

\(\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -dCmr: a+b/b=c+d/dCâu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.Cmr: a/a+b=c/c+dCâu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)Cmr a/b=c/dCâu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 Cmr ac/bd=a^2+c^2 /b^2+d^2Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d Cmr: (a-b)^2/(c-d)^2=ab/cdCâu 6: cho tỉ lệ thức a/b=c/d...
Đọc tiếp

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d

Cmr: a+b/b=c+d/d

Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.

Cmr: a/a+b=c/c+d

Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)

Cmr a/b=c/d

Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 

Cmr ac/bd=a^2+c^2 /b^2+d^2

Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d 

Cmr: (a-b)^2/(c-d)^2=ab/cd

Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d

Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014

Câu 7:cho a/c=c/d với a,b,c khác 0 

Cmr a/b=a^2+c^2/b^2+d^2

Câu 8: cho a/c=c/d với a,b,c khác 0

Cmr b-a/a=b^2-a^2/a^2+c^2

Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0

Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d

Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0

Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd

3
22 tháng 11 2018

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

22 tháng 11 2018

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

6 tháng 8 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}-1=\frac{c}{d}-1=>\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)

6 tháng 8 2015

Ta có\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)

6 tháng 8 2015

Ta có : \(\frac{c}{d}=\frac{a}{b}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

                          \(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\) ( Đpcm)

 ****

 

9 tháng 9 2017

a,Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (theo t/c của dãy tỉ số bằng nhau)

b, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{c}{a}=\frac{d}{b}=\frac{c+d}{a+b}\)(theo t/c của dãy tỉ số bằng nhau)

30 tháng 7 2015

Ta có : a+b/b+c = c+d/d+a 
=> (a+b)/(c+d)= (b+c)/(d+a) 
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1 
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a) 
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a 
- Nếu a+b+c+d = 0 (điều phải chứng minh)

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

20 tháng 5 2018

từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)ad = bc \(\Rightarrow\)ad + 2bc = bc + 2ad

\(\Rightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd

\(\Rightarrow\)a ( b + d ) + 2c ( b + d ) = a ( b + 2d ) + c ( b + 2d )

\(\Rightarrow\)( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )

20 tháng 5 2018

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)\(=\frac{2c}{2d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

\(\Rightarrow\text{(a+2c)(b+d)=(a+c)(b+2d)  ( đpcm)}\)