K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

2           

10 tháng 3 2020

x(x - 1) ( x + 1) (x + 2 ) = 24  

<=> [x(x + 1)][(x - 1)(x + 2)] = 24

<=> (x^2 + x)(x^2 + x - 2) = 24

đặt x^2 + x  = a

<=> a(a - 2) = 24

<=> a^2 - 2a = 24

<=> a^2 - 2a - 24 = 0 

<=> a^2 + 4a - 6a - 24 = 0

<=> a(a + 4) - 6(a + 4) = 0

<=> (a - 6)(a + 4) = 0

<=> a = 6 hoặc a = -4

a = 6 => x^2 + x = 6

<=> x^2 + x - 6 = 0

<=> (x + 3)(x - 2) = 0

<=> x = - 3 hoặc x = 2

a = -4 => x^2 + x + 4 = 0 

mà x^2 + x + 4 > 0 

=> vô lí

vậy x = -3 hoặc x = 2

24 tháng 4 2021

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=24\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=24\)

Dat \(x^2+3x+2=a\left(a>0\right)\)

\(\Leftrightarrow\left(a-2\right)a=24\)

\(\Leftrightarrow a^2-2a-24=0\)

\(\Leftrightarrow a^2-6a+4a-24=0\)

\(\Leftrightarrow\left(a-6\right)\left(a+4\right)=0\\ \left[{}\begin{matrix}a=6\\a=-4\left(Loai\right)\end{matrix}\right.\)

Thay a=6:

\(x^2-3x+4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vayy...

 

 

24 tháng 4 2021

\(x(x+1)(x+2)(x+3)=24\)

\(\Leftrightarrow[x(x+3)][(x+1)(x+2)]-24=0 \)

\(\Leftrightarrow(x^2+3x)(x^2+3x+2)-24=0\)

\(\Leftrightarrow[(x^2+3x+1)-1][(x^2+3x+1)+1]-24=0\)

Đặt \(a=x^2+3x+1\)

\(\Leftrightarrow(a-1)(a+1)-24=0\)

\(\Leftrightarrow (a^2-1)-24=0\)

\(\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\)

\(\Leftrightarrow(a-5)(a+5)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-5=0\\a+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=5\\x^2+3x+1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\left(vn\right)\end{matrix}\right.\\ \Leftrightarrow x\left(x+3\right)-4=0\\ \Leftrightarrow x\left(x+3\right)=4\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x+3=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm pt \(S=\{-1;4\}\).

 

1 tháng 3 2019

=( x\(^2\)+x)(x\(^2\)+x -2)=24

đặt x\(^2\)+ x= a\(\Rightarrow\)a(a-2)=24

chuển vế sang rồi tìm a, thay x vào rồi tìm x. tương tự mấy cau trên thui

Ta có : \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=24\)\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)(1)

Đặt \(t=x^2+x-1\Rightarrow\hept{\begin{cases}x^2+x=t+1\\x^2+x-2=t-1\end{cases}}\)

Suy ra pt \(\left(1\right)\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\Leftrightarrow t^2-1=24\) 

\(\Leftrightarrow t^2=25\Leftrightarrow\left(x^2+x-1\right)=25\)

\(\Leftrightarrow\hept{\begin{cases}x^2+x-1=5\\x^2+x-1=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+x-6=0\\x^2+x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)

4 tháng 2 2017

\(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+2\right)\right]\left[x\left(x+1\right)\right]-24=0\)

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x\right)-24=0\)

\(\Leftrightarrow\left[\left(x^2+x-1\right)-1\right]\left[\left(x^2+x-1\right)+1\right]-24=0\)

\(\Leftrightarrow\left(x^2+x-1\right)^2-1^2-24=0\)

\(\Leftrightarrow\left(x^2+x-1\right)^2-5^2=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+4\right)=0\)

Mà \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+3,75>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy ...

26 tháng 8 2016

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)=24\\ =>\left(x^2+3x\right)\left(x^2+3x+3\right)=24\\\)

Đặt \(x^2+3x=a\)ta có 

=> \(a\left(a+3\right)=24\\ a^2+3a-24=0\\ \)

cầu phân tích đa thức thành nhân tử di minh tinh dc

 X =\(\frac{-3+\sqrt{105}}{2}\)

X = \(\frac{-3-\sqrt{105}}{2}\)

18 tháng 6 2020

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

<=> \(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=2\)

<=> \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

Đặt: \(x^2+5x+4=t\) ta có phương trình: 

\(t\left(t+2\right)=24\)

<=> \(t^2+2t-24=0\)

<=> t = 4 hoặc t = -6 

Với t = 4 ta có: \(x^2+5x+4=4\)<=> x = 0 hoặc x = - 5

Với t = - 6 ta có: \(x^2+5x+4=-6\) phương trình vô nghiệm 

Vậy x = 0 hoặc x = -5

27 tháng 6 2020

[(x+1).(x+4].[(x+2).(x+3)] =24

<-> (x2+4X+X+4).(x2+3x+2x+6)=24

<-> (x2+5x+4).(x2+5x+6)=24

đặt x2+5x+4=a 

<-> a.(a+2)=24 

<-> a2+2a-24+0

ta có \(\Delta\)= 22-4.1.(-24)

               =4+96

             =100 >0

   -> \(\sqrt{\Delta}\)=\(\sqrt{100}\)=10

=> pt có 2 nghiệm pb 
x1\(\frac{2+10}{2}\)=6 

x2=\(\frac{2-10}{2}\)=-4 

1 1 5(4x+7y=164x-3y =-24* y 2b)1 1 3Bài 1. Giải hệ phương trình: a)x y 2Bài 2. Giải các phương trình sau:a) x- 10x + 21 = 0;b) 5x – 17x + 12 = 0c) 2x* - 7x? – 4 = 0;16d)x-3 1-x30= 3Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.X x,= 4b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏaX X,Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0a) Giải phương trình (1) với m= -4b) Với x1, X2 là...
Đọc tiếp

1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF

0
5 tháng 8 2015

Xét tích (x+1)(x+2)(x+3)(x+4) là tích của 4 số tự nhiên liên tiếp.

Mà ta thấy 24 = 1 . 2 . 3 . 4

Vậy x + 1 = 1 ; x + 2 = 2 ; x + 3 = 3 ; x + 4 = 4

Do đó x = 0

5 tháng 8 2015

(x+1)(x+2)(x+3)(x+4)= 24

<=> (x+1)(x+2)(x+3)(x+4)-24=0

<=>(x+1)(x+4)(x+2)(x+3)-24=0

<=>(x2+5x+4)(x2+5x+6)-24=0

Đặt t=x2+5x+4 ta được:

t.(t+2)-24=0

<=>t2+2t-24=0

<=>t2-4t+6t-24=0

<=>t.(t-4)+6.(t-4)=0

<=>(t-4)(t+6)=0

<=>t-4=0 hoặc t+6=0

thay t=x2+5x+4 ta được:

x2+5x=0 hoặc x2+5x+10=0

Vì x2+5x+10=x2+2.x.5/2+25/4+15/4

=(x+5/2)2+15/4>0

nên 

x2+5x=0

<=>x.(x+5)=0

<=>x=0 hoặc x=-5

1 tháng 7 2020

\(\left(x-1\right)\left(x-2\right)\left(x+3\right)\left(x+4\right)=24\)\(\left(đkxđ:x\ne1;2;-3;-4\right)\)

\(< =>\left(x^2+2x-8\right)\left(x^2+2x-3\right)=24\)

Đặt \(x^2+2x=u\)thì phương trình trở thành :

\(\left(u-8\right)\left(u-3\right)=24\)

\(< =>u^2-11u=0\)

\(< =>u\left(u-11\right)=0\)

\(< =>\orbr{\begin{cases}u=0\\u=11\end{cases}}\)

Với \(u=0\)thì \(x^2+2x=0\)\(< =>\orbr{\begin{cases}x=0\\x=-2\end{cases}\left(tmđkxđ\right)}\)

Với \(u=11\)thì \(x^2+2x-11=0< =>\orbr{\begin{cases}-1-2\sqrt{3}\\-1+2\sqrt{3}\end{cases}}\left(tmđkxđ\right)\)(giải delta)

Vậy tập nghiệm  của phương trình trên là \(\left\{0;-2;-1-2\sqrt{3};-1+2\sqrt{3}\right\}\)