Tìm ba số thực x, y, z, biết:\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x2017- y2018=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk(x,y,z khác 0)
Áp dụng dãy tỉ số = nhau , ta có
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{z+x+y}=1\Rightarrow x=y=z\)
thay vào giả thiết kia, ta có
\(x^{2017}-x^{2018}=0\Leftrightarrow x^{2017}\left(1-x\right)=0\Leftrightarrow x=1\) (vì x khác 0)
=>x=y=z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=8.2=16\\y=2.12=24\\z=15.2=30\end{cases}}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{1}{x+y+z}=\frac{x+y-3+y+z+1+x+z+2}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
Xét \(\frac{x+y-3}{z}=2\)
\(\Rightarrow x+y-3=2z\)
\(\Rightarrow x+y+z-3=3z\)
\(\Rightarrow\frac{1}{2}-3=3z\)
\(\Rightarrow\frac{-5}{2}=3z\)
\(\Rightarrow z=\frac{-5}{6}\)
Xét \(\frac{y+z+1}{x}=2\)
\(\Rightarrow y+z+1=2x\)
\(\Rightarrow x+y+z+1=3x\)
\(\Rightarrow\frac{1}{2}+1=3x\)
\(\Rightarrow\frac{3}{2}=3x\)
\(\Rightarrow x=\frac{1}{2}\)
Xét \(\frac{x+z+2}{y}=2\)
\(\Rightarrow x+z+2=2y\)
\(\Rightarrow x+y+z+2=3y\)
\(\Rightarrow\frac{1}{2}+2=3y\)
\(\Rightarrow\frac{5}{2}=3y\)
\(\Rightarrow y=\frac{5}{6}\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\\z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(xyz\right)^2}=1\Rightarrow xyz=\pm1\)(đpcm)
Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra x = y = z .
mặt khác, theo giả thiết: x2017 = y2005 Nên x = y = 1. Vì :
- Nếu x = y > 1 : x2017> x2005 = y2005
- Nếu x = y < 1 thì : x2017 < x2005 = y2005
Vậy x = y = z = 1