K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2015

KQ : MaxA=3 <=>x=y=z=1

11 tháng 6 2019

Đặt \(\left(x;y;z\right)\rightarrow\left(a^3;b^3;c^3\right)\Rightarrow a^3b^3c^3=1\Rightarrow abc=1\).

Thì \(A=\Sigma_{cyc}\frac{1}{a^3+b^3+1}\le\Sigma_{cyc}\frac{1}{ab\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\)

Dấu "=" xảy ra khi a = b = c = 1 tức là x = y = z = 1

Đúng không ta?:3

12 tháng 8 2019

\(1=x^3+y^3=\frac{x^4}{x}+\frac{y^4}{y}\ge\frac{\left(x^2+y^2\right)^2}{x+y}\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}=\frac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow\)\(x+y\le\sqrt[3]{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt[3]{2}}\)

30 tháng 7 2018

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Ta có:

\(A=\frac{x^2+y^2}{x-y}=\frac{(x^2-2xy+y^2)+2xy}{x-y}\)

\(=\frac{(x-y)^2+2xy}{x-y}=\frac{(x-y)^2+2}{x-y}\) (do \(xy=1\) )

\(=x-y+\frac{2}{x-y}\)

Áp dụng BĐT Cauchy cho 2 số \(x-y, \frac{2}{x-y}\) dương ta có:

\(A=(x-y)+\frac{2}{x-y}\geq 2\sqrt{(x-y).\frac{2}{x-y}}=2\sqrt{2}\)

Vậy \(A_{\min}=2\sqrt{2}\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=\sqrt{2}\\ xy=1\end{matrix}\right.\) \(\Leftrightarrow (x,y)=\left(\frac{\sqrt{6}+\sqrt{2}}{2}; \frac{\sqrt{6}-\sqrt{2}}{2}\right)\)

29 tháng 7 2018

em chưa học Cauchy chị ơi

18 tháng 3 2021

3-1=2 nhé

3 tháng 4 2021

? đây mà là toán lớp 1

12 tháng 2 2016

cau 2 chung minh cai gi vay ban