Giúp mk với, câu này khó quá: Tìm số nguyên a biết:
(a2 - 49).(a2 - 81) <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow49< a^2< 81\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a>7\\a< -7\end{matrix}\right.\\-9< a< 9\end{matrix}\right.\)
(a2-49).(a2-81)=0
=>(a2-49)=0 hoặc(a2-81)=0
TH1:(a2-49)=0
=>a2=49
=>a=7
TH2:(a2-81)=0
=>a2=81
=>a=9
Vậy a={7;9}
nhớ k mk nha
a.
\(a^2+a+43=k^2\) (\(k\in N;k>a\))
\(\Leftrightarrow4a^2+4a+172=4k^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2k-2a-1\right)\left(2k+2a+1\right)=171\)
Pt ước số, bạn tự lập bảng
b.
\(a^2+81=k^2\)
\(\Leftrightarrow k^2-a^2=81\)
\(\Leftrightarrow\left(k-a\right)\left(k+a\right)=81\)
Bạn tự lập bảng ước số
Đối với lớp 8 cái này khó; giải theo cách bình thường nha
+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3
\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\) chia 3 dư 2
Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮3\) (1)
+) Giả sử \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4
\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2
Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai
Vậy \(abc⋮4\)(2)
+) +) Giả sử \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5
\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5
Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮5\)(3)
Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)
Ta có; 60 = 3.4.5
Đặt M = abc
Nếu a, b, c đều không chia hết cho 3 => a2, b2 và c2 chia hết cho 3 đều dư 1=> a2 khác b2 + c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M \(⋮\)3
Nếu a, b, c đều không chia hết cho 5 => a2, b2 và c2 chia 5 dư 1 hoặc 4
=> b2 + c2 chia 5 thì dư 2; 0 hoặc 3.
=> a2 khác b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5
Nếu a, b, c là các số lẻ => b2 và c2 chia hết cho 4 dư 1.
=> b2 + c2 = 4 dư 1 => a2 khác b2 + c2
Do đó 1 trong 2 số a, b phải là số chẵn
Giả sử b là số chẵn
Nếu c là số chẵn => M \(⋮\) 4
Nếu c là số lẻ mà a2 = b2 + c2 => a là số lẻ
\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)
\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)
Vậy M = abc \(⋮\)3 . 4. 5 = 60
kho qua
\(\left(a^2-49\right)\left(a^2-81\right)< 0\)
\(\Rightarrow\)\(\hept{\begin{cases}a^2-49>0\\a^2-81< 0\end{cases}}\) hoặc \(\hept{\begin{cases}a^2-49< 0\\a^2-81>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(a-7\right)\left(a+7\right)>0\\\left(a-9\right)\left(a+9\right)< 0\end{cases}}\) hoặc \(\hept{\begin{cases}\left(a-7\right)\left(a+7\right)< 0\\\left(a-9\right)\left(a+9\right)>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(a-7\right)>0\\\left(a-9\right)< 0\end{cases}}\) hoặc \(\hept{\begin{cases}a-7< 0\\a-9>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a>7\\a< 9\end{cases}}\) hoặc \(\hept{\begin{cases}a< 7\\a>9\end{cases}}\) ( vô lí)
\(\Rightarrow7< a< 9\)
mà \(a\in Z\)
nên \(a=8\)
vậy \(a=8\)