K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó;ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

hay ΔOAB cân tại O

b: Ta có: ΔOAB cân tại O

mà OC là đường phân giác

nên CO là đường cao

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có 

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

Suy ra: CD=CE

d: OA=12cm

OC=13cm

=>AC=5cm

3 tháng 1 2018

Bạn ơi !Nhìn hình vẽ thì \(\Delta AOB\) không thể cân tại A được nhé ! Mình sửa là \(\Delta ABC\) cân tại A, nếu có gì thì bạn góp ý nhé!

O x y A B C

Xét \(\Delta AOB\)\(\Delta AOC\) có :

\(\widehat{AOB}=\widehat{AOC}\left(gt\right)\)

OA : chung

\(\widehat{OBA}=\widehat{OCA}\left(=90^o\right)\)

=> \(\Delta AOB\) = \(\Delta AOC\) (cạnh huyền - góc nhọn)

Xét \(\Delta ABC\) có :

\(BA=AC\) (do \(\Delta AOB\) = \(\Delta AOC\) - cmt)

=> \(\Delta ABC\) cân tại A

25 tháng 3 2020

ko kl à

8 tháng 12 2016

Hình thím tự vẽ:

(tại cái bài lúc nãy đang làm gần xong cái tự nhiên "Ôi hỏng!!")

Gọi M là giao điểm của OA và BC

-Xét tam giác OAB và tam giác OAC có:

\(\widehat{AOB}\)=\(\widehat{AOC}\) (GT)

OA: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\)=900 (GT)

=> tam giác OAB = tam giác OAC

(theo trường hợp cạnh huyền góc nhọn)

Ta có: OA là phân giác góc O

\(\widehat{AOB}\)=\(\widehat{AOC}\) = \(\frac{1}{2}\)\(\widehat{O}\) = \(\frac{1}{2}\)1200 = 600

Trong tam giác OAB có:

\(\widehat{O}\)+\(\widehat{A}\)+\(\widehat{B}\)=1800 (tổng 3 góc trong tam giác)

hay 600 + góc A + 900 = 1800

=> \(\widehat{A}\) = 300

tam giác OAB = tam giác OAC

nên \(\widehat{OAB}\)=\(\widehat{OAC}\)=300

-Xét tam giác ABM và tam giác ACM có:

AM: cạnh chung

\(\widehat{BAM}\)=\(\widehat{CAM}\) (tam giác OAB = tam giác OAC)

AB = AC (tam giác OAB = tam giác OAC)

=> tam giác ABM = tam giác ACM (c.g.c)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

Trong tam giác ABM có:

\(\widehat{BAM}\)+\(\widehat{ABM}\)+\(\widehat{AMB}\)=1800 (tổng 3 góc của tam giác)

hay 300 + góc ABM + 900 = 1800

=> \(\widehat{ABM}\)=600

tam giác ABM = tam giác ACM

nên \(\widehat{ABM}\)=\(\widehat{ACM}\)=600 (2 góc tương ứng)

Ta có: \(\widehat{BAM}\)+\(\widehat{CAM}\)=300+300=600

Trong tam giác ABC có:

\(\widehat{BAC}\)=\(\widehat{ABC}\)=\(\widehat{ACB}\)=600

=> tam giác ABC là tam giác đều

Vậy tam giác ABC là tam giác đều

"Sorry, hôm nay tớ bực bội wa"

8 tháng 12 2016

\(\Delta BOA\)vuông tại B có: BOA + OAB = 90o

\(\Delta COA\)vuông tại C có: COA + OAC = 90o

Mà BOA = COA vì OA là tia phân giác của BOC

=> OAB = OAC

Xét \(\Delta BOA\)\(\Delta COA\) có:

BOA = COA (cmt)

OA là cạnh chung

BAO = CAO (cmt)

Do đó, \(\Delta BOA=\Delta COA\left(c.g.c\right)\)

=> AB = AC (2 cạnh tương ứng)

Như vậy tam giac ABC cân tại A

18 tháng 9 2019