Tìm x để căn-(x-2)^2 có nghĩa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\in\varnothing\)
b: ĐKXĐ: \(-\sqrt{3}\le x\le\sqrt{3}\)
\(\sqrt{x^2+2017}\)có nghĩa
\(\Leftrightarrow x^2+2017\ge0\)
mà \(x^2\ge0\Rightarrow x^2+2017>0\forall x\)
vậy căn thức trên luôn có nghĩa với mọi x
\(\sqrt{x^2+2017}\) có nghĩa khi x2+2017\(\ge0\)
\(\Leftrightarrow x^2\ge-2017\)
mà x2\(\ge0\)với mọi \(x\)
\(\Rightarrow\) PT vô số nghiệm
\(\sqrt{25-x^2}\) lớn hơn hoặc= 0
=> 25-x2 lớn hơn hoặc= 0
=> -x2 lớn hơn hoặc= -25
x2 bé hơn hoặc =25
x bé hơn hoặc =5
\(\sqrt{x-2\sqrt{x-1}}\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x\ge2\sqrt{x-1}\\x\ge1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x^2\ge4\left(x-1\right)^2\\x\ge1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x^2-4x^2+8x-4\ge0\\x\ge1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\le x\le2\\x\ge1\end{matrix}\right.\\ \Rightarrow\dfrac{2}{3}\le x\le2\)
để căn bậc 2 có nghĩa thì
\(x^2\le4\\ \Rightarrow-2\le x\le2\)
a) \(\frac{1}{\sqrt{x^2-8x+15}}\)DK : \(x^2-8x+15>0\Rightarrow x< 3\)hoặc \(x>5\)
b) \(\sqrt{2}-\sqrt{x-1}\)DK : \(x-1\ge0\Rightarrow x\ge1\)