chứng minh rằng tổng của 4 số tự nhiên liên tiếp không là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 4 số tự nhiên liên tiếp đó là:a;a+1;a+2;a+3\(a\in N\)
Luôn có:\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(A=n^2+3n\) thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)\(\left(ĐPCM\right)\)
Kết luận:Tổng 4 số tự nhiên luôn là một số chính phương
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.
Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2
Vậy tổng là:
a2 + (a+1)2+ (a+2)2 + (a+3)2 + (a+4)2= 5a2+1+4+9+16=5a2+30
Gọi 5 số tự nhiên liên tiếp là n-2;n-1;n;n+1;n+2
Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2
=5n^2+10=5(n^2+2)
n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5
=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Chúc bạn học tốt.
Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )
Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)
Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )
Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3)
Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn
Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)
Ta có
\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)
Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)
Mặt khác , \(t^2\equiv0\left(mod4\right)\)
=> Vô lý
Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương
Gọi 4 số tự nhiên liên tiếp là \(a,\left(a+1\right),\left(a+2\right),\left(a+3\right)\)
Tổng các số là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)
\(=4a+4+2\)
\(=4\left(a+1\right)+2\)
Tuy nhiên số chính phương chia hết cho 4 hoặc chia 4 dư 1
Mà tổng 4 số tự nhiên chia 4 dư 2 nên k phải số chình phương
\(=>ĐPCM\)
cảm ơn nhé shushi kaka