K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

ta có  tử = \(2n^2+n+2n+1+59=n\left(2n+1\right)+\left(2n+1\right)+59=\left(n+1\right)\left(2n+1\right)+59\)

mà để P là số nguyên <=> \(59⋮2n+1\)

đến chỗ này lập bảng nhé

27 tháng 4 2023

Làm rõ chi tiết chút nha mọi người help em 1 mạng đi 

a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)

mà n nguyên

nên \(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

b: B nguyên thì 3n+5-5 chia hết cho 3n+5

=>\(3n+5\inƯ\left(-5\right)\)

mà n nguyên

nên \(3n+5\in\left\{-1;5\right\}\)

=>n=-2 hoặc n=0

c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3

=>\(2n-3\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;1\right\}\)

5 tháng 8 2020

Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :

\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)

Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)

\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)

Vì n nguyên 

\(\Rightarrow2n\in\left\{0;2\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

5 tháng 8 2020

Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)   

=> \(2n^2+3n+3⋮2n-1\)

=> \(4n^2+6n+6⋮\left(2n-1\right)\)

=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)

Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)

=> \(10⋮\left(2n-1\right)\)

=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)

=> n = ...... 

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

a: Ta có: \(2n+1⋮n+2\)

\(\Leftrightarrow2n+4-3⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-1;-3;1;-5\right\}\)

b: Để B là số nguyên thì \(n+3⋮n-2\)

\(\Leftrightarrow n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

c: Để C là số nguyên thì \(3n+7⋮n-1\)

\(\Leftrightarrow3n-3+10⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Lời giải:

Để $A=\frac{2n-1}{3n-2}$ nguyên thì:

$2n-1\vdots 3n-2$

$\Rightarrow 3(2n-1)\vdots 3n-2$

$\Rightarrow 6n-3\vdots 3n-2$

$\Rightarrow 2(3n-2)+1\vdots 3n-2$

$\Rightarrow 1\vdots 3n-2$

$\Rightarrow 3n-1\in\left\{\pm 1\right\}$

$\Rightarrow n\in\left\{0; \frac{2}{3}\right\}$

Mà $n$ nguyên nên $n=0$

Thử lại thấy đúng.

21 tháng 4

n=1

 

17 tháng 11 2019

a) n ∈ {2;4}            b) n ∈ {-3;-1}

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

11 tháng 5 2018

\(\frac{2n+3}{3n-1}\in Z\)

<=> 2n + 3    chia hết cho    3n - 1

<=> 6n + 9    chia hết cho     3n - 1

<=> (6n - 2) + 11    chia hết cho    3n - 1

<=>  2(3n - 1) + 11    chia hết cho    3n - 1

<=> 11    chia hết cho 3n - 1

<=> 3n - 1 thuộc Ư(11) = {\(\pm1;\pm11\)}

Thay từng giá trị vào 3n - 1 để tìm n 

Rồi xét giá trị của n có nguyên hay không 

Nếu không thì vứt

Nếu là số nguyên thì nhận