Giúp tui với :
Cho A = (5n^2 - 8n^2 -9n^2).(-n^3 + 4n^3) với giá trị nào của n thì:
a, A>
b, A<0
c, A=0
Cho tui thanks nha !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(15n^2-8n^2-9n^2\right).\left(-n^3+4n^3\right)\)
\(A=\left(-2n^2\right)\cdot3n^3\)
\(A=-6n^5\)
a) Để A > 0
\(\Leftrightarrow-6n^5>0\)
\(\Leftrightarrow n^5< 0\)(Vì -6 < 0)
\(\Leftrightarrow n< 0\)
b) Để A < 0
\(\Leftrightarrow-6n^5< 0\)
\(\Leftrightarrow n^5>0\) (Vì -6 < 0)
\(\Leftrightarrow n>0\)
c) Để A = 0
\(\Leftrightarrow-6n^5=0\)
\(\Leftrightarrow n^5=0\)
\(\Leftrightarrow n=0\)
Câu 1:
Gọi $d=ƯC(n, n+1)$
$\Rightarrow n\vdots d; n+1\vdots d$
$\Rightarrow (n+1)-n\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯC(n, n+1)=1$
Câu 2:
Gọi $d=ƯC(5n+6, 8n+7)$
$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$
$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$
$\Rigtharrow 13\vdots d$
$\Rightarrow d\left\{1; 13\right\}$
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
Ta có : A = (5m2 - 8m2 - 9m3) (- n3 + 4n3) = [(5 - 8 - 9) . m2 ] . [(-1) + 4] n3 = - 12m2 . 3n3 = (-12) . 3 m2.n3 = -36.m2.n3 A ≥ 0 ⇒ -36.m2.n3 ≥ 0 . Vì m2 ≥ 0 với mọi m nên n3 < 0 ⇒ n < 0.Vậy với mọi m và với n < 0 thì A ≥ 0
Cho A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
Với giá trị nào m,n thì A ≥ 0
A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
A= -12m^2/3n^3
= -4m^2/n^3
do m^2>=0 với mọi m
nên A>=0
=> n<0 d0 -4<0
vậy A ≥ 0 khi n<0 vầ m bất kì
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).