Cho a,b,c khác 0. a+b+c=0. tính \(\frac{\left(a+b\right)\left(b+c\right)\left(c+b\right)}{abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ a+b+c=0 ta đc: 2a +2b + 2c =0
Phá ngoặc ta đc a+b+c+c+a / abc
=> 2a + 2b+2c / abc
mà 2a +2b +2c =0
nên biểu thức trên bằng 0
k cho mk nha!!
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\Rightarrow\frac{a+b}{ab}=\frac{-1}{c}\)
\(\Rightarrow a+b=\frac{-ab}{c}\)
Tương tự : \(b+c=\frac{-bc}{a};a+c=\frac{-ac}{b}\)
thay vào A,ta được :
\(A=\frac{\frac{-ab}{c}.\frac{-bc}{a}.\frac{-ac}{b}}{abc}=\frac{-a^2b^2c^2}{abc}=-abc\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
- TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
- TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Giải
Cho a,b,c khác 0
a+b−cc =a−b+cb =−a+b+ca
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> (a+b)(b+c)(c+a)abc = 1
Study well
Cái phần cuối mk sưa lại nha
=> a = b = c
=> \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=1\)
Study well
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Leftrightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1. Nếu a + b + c = 0 thì : \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2. Nếu \(a+b+c\ne0\) thì a = b = c
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a^3}=8\)
a+b+c = 0 =>a+b=-c ; b+c=-a ; c+a=-b
=> (a+b).(b+c).(c+a)/abc = (-c).(-a).(-b)/abc = -abc/abc = -1
k mk nha
Ta có : a + b + c = 0
=> a + b = -c
=> b + c = -a
=> c + a = -b
Vậy \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)