Tìm a thuộc Z, biết:
a)2a-3 chia hết cho a+5
b)2a+1 chia hết cho a-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Giả sử 8a + 5b \(⋮\) 7 (1)
Vì 2a + 3b \(⋮\) 7 nên 3(2a + 3b) \(⋮\) 7
=> 6a + 9b \(⋮\) 7 (2)
Từ (1) và (2) => (8a + 5b) + (6a + 9b) \(⋮\) 7
=> 8a + 5b + 6a + 9b \(⋮\) 7
=> (8a + 6a) + (5b + 9b) \(⋮\) 7
=> 14a + 14b \(⋮\) 7
=> 7(2a + 2b) \(⋮\) 7
=> Giả sử đúng
Vậy 8a + 5b \(⋮\) 7 (đpcm)
A=2a2-a+2 = 2a2+a - 2a-1+3=a(2a+1)-(2a+1)+3=(2a+1)(a-1)+3
Để A chia hết cho (2a+1) thì 3 phải chia hết cho 2a+1. Vậy:
+/ 2a+1=1 => a=0
+/ 2a+1=3 => a=1