Cho A= 3 + 32 + 33 + ........... + 32017
Tìm số tự nhiên n, biết rằng 2A + 3 = 3n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Ta có: A = 3 + 3 2 + 3 3 + . . . + 3 100
=> 3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101
=> 3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )
=> 2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100
2 A = 3 101 - 3 <=> 2 A + 3 = 3 101 , mà 2 A + 3 = 3 n
=> n = 101
A=3+32+33+...+399
3A=32+33+...+3100
3A-A=(32+33+...+3100)-(3+32+33+...+399)
2A=3100-3
2A+3=3100
⇒n=100
Đây nè bạn, chúc bạn học tốt :))
A = 3 + 32 + 33+ ... + 399
3A = 3. (3 + 32 + 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
⇒\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100
\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)
Mặt khác: \(2B+3=3^n\)
\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)
Vậy n = 101.
B = 31 + 32 + 33 +...+ 3100
3B = 32 + 33 + ...+ 3100 + 3101
3B - B = 3101 - 3
2B = 3101 - 3
2B + 3 = 3n
⇒ 3101 - 3 + 3= 3n
3n = 3101
n = 101
Kết luận n = 101
Bài 1:
A= 3+ 3^2 + 3^3 +......+ 3^2016
3A= 3^2+3^3+3^4+.......+3^2017
3A-A= 3^2 + 3^3 +3^4+.....+3^2017-( 3+3^2+3^3+.......+3^2016)
2A= 3^2017-3
A= (3^2017-3) :2
Bài 2:
2a+3= 3n
Ta thấy : 3 chia hết cho 3; 3n chia hết cho 3
=> 2a chia hết cho 3 . Mà 2 ko chia hết cho 3 => a chia hết cho 3
=> a= 0
A = 3 + 3^2 + 3^3 +...+ 3^99
3A = 32 + 33 + 34 + ... + 3100
3A - A = ( 32 + 33 + 34 + ... + 3100 ) - ( 3 + 3^2 + 3^3 +...+ 3^99 )
2A = 3100 - 3
\(\Rightarrow\)2A = 3100 - 3 + 3 = 3100
Vậy n = 100
A= 3+ 3^2 + 3^3 +...+3^99
3A= 3^2 + 3^3 + 3^4 +...+ 3^100
2A=3A-A=(3^2+3^3+3^4+...+3^100) - (3+3^2+3^3+...+3^99)
2A=3^100 - 3
2A + 3=3n= 3^100 - 3 + 3 = 3^100
n=3n:3=3^100:3
n=3^100-1=3^99
A= 3 + 32 + 33 + ........... + 32017
3A = 32 + 33 + 34 + ... + 32018
3A - A = ( 32 + 33 + 34 + ... + 32018 ) - ( 3 + 32 + 33 + ........... + 32017 )
2A = 32018 - 3
suy ra : 2A + 3 = 32018 - 3 + 3 = 32018
suy ra n = 2018
n=2018