cho nửa (O) đường kính AB và AC là một dây của nó. kẻ tiếp tuyến Ax và kẻ đường phân giác của góc CAx cắt nửa đương tròn tại E và cắt BC kéo dài tại D
a) CM tam giác ABD cân
b) CM OE//BD
c) I Là giao điểm của AC và BE. CM DI\(\perp\)AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ACD}=90^0\Rightarrow\Delta ACD\) vuông tại C
\(\Rightarrow\widehat{ADC}+\widehat{DAC}=90^0\) (1)
Lại có \(\widehat{DAC}=\widehat{DAx}\) (do AD là phân giác)
\(\widehat{BAE}+\widehat{DAx}=90^0\) (Ax là tiếp tuyến tại A)
\(\Rightarrow\widehat{BAE}+\widehat{DAC}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{ADC}=\widehat{BAE}\)
\(\Rightarrow\Delta ABD\) cân tại B
b.
\(\widehat{AEB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AEB}=90^0\Rightarrow AE\perp BE\)
\(\Rightarrow BE\) là đường cao trong tam giác BAD
Mà tam giác BAD cân tại B \(\Rightarrow BE\) đồng thời là trung tuyến
\(\Rightarrow E\) là trung điểm AD
Lại có O là trung điểm AB
\(\Rightarrow OE\) là đường trung bình tam giác ABD
\(\Rightarrow OE||BD\)
c.
Xét tam giác ABD có: \(AC\perp BD;BE\perp AD\)
\(\Rightarrow I\) là trực tâm tam giác ABD
\(\Rightarrow DI\) là đường cao thứ 3
\(\Rightarrow DI\perp AB\)
d.
Ta có: \(\widehat{BAC}+\widehat{CAx}=90^0\)
\(\Rightarrow\widehat{BAC}+2.\widehat{CAE}=90^0\)
\(\Rightarrow\widehat{CAE}=\dfrac{90^0-20^0}{2}=35^0\)
\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=20^0+35^0=55^0\)
Xét tam giác vuông ABE có:
\(cos\widehat{BAE}=\dfrac{AE}{AB}\Rightarrow AE=AB.cos\widehat{BAE}=2.cos55^0\approx1,15\left(cm\right)\)
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi
a) Từ E vẽ đường thẳng vuông góc với Ax tại N
Ta có EN song song AB ( cùng \(\perp\) Ax)
Xét ΔNAE vuông tại N và ΔCAD vuông tại C, có
\(\widehat{NAE}\) = \(\widehat{CAD}\) (AD là tia phân giác của \(\widehat{CAx}\))
→ΔNAE đồng dạng ΔCAD (gn)
→\(\widehat{AEN}\) = \(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{AEN}\) = \(\widehat{BAE}\) ( 2goc1 so le trong của eN song song AB)
→\(\widehat{ADC}\) = \(\widehat{BAE}\) (cùng bằng \(\widehat{AEN}\) )
→ΔBAD cân tại B
Ta lại có ΔOAE cân tại O (OA=OE)
→\(\widehat{OAE}\) = \(\widehat{OEA}\) mà \(\widehat{BAE}\) =\(\widehat{ADC}\) (cmt)
→\(\widehat{OEA}\) = \(\widehat{ADC}\) (cùng bằng \(\widehat{OAE}\) )
mà 2 góc này nằm ở vị trí đồng vị của OE và BD→OE song song BD
b)Xét ΔACB nội tiếp (O) có đường kính AB
→ΔACB vuông tại C có cạnh huyền AB
Xét ΔAEB nội tiếp (O) có đường kính AB
→ΔAEB vuông tại E có cạnh huyền AB
Xét ΔADB có 2 đường cao Ac và BE cắt nhau tại I
→I là trực tâm→DI là đường cao trong ΔADB→DI \(\perp\) AB