Cho A + 5+ 52 +53 + .......+ 5100
Tìm số tự nhiên n biết rằng 4A + 5 = 5mũ n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
\(T=5+5^2+5^3+...+5^{2000}\)
=>\(5T=5^2+5^3+5^4+...+5^{2001}\)
=>\(5T-T=5^2+5^3+...+5^{2001}-5-5^2-...-5^{2000}\)
=>\(4T=5^{2001}-5\)
=>\(4T+5=5^{2001}\)
Sửa đề:\(4T+5=5^m\)
=>\(5^m=5^{2001}\)
=>m=2001
T=5+52+53+...+52000
=>5T=52+53+54+...+52001
=>5T−T=52+53+...+52001−5−52−...−52000
=>4T=52001−5
=>4T+5=52001
Ta có:4T+5=5m
=>52001=5m
=>m=2001
Vậy m=2001
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
A = 5+52+53+.....+52011
A5 = (5+52+53+.....+52011).5
A5 = 52+53+54+.....+52012
A5 - A = (52+53+54+.....+52012)-(5+52+53+.....+52011)
A4 = 52+53+54+.....+52012 - 5-52-53-.....-52011
A4 = 52012 -5
A = (52012 -5) :4
Mà 4A + 5 = 5N => 4 (52012 -5) :4 + 5 = 5N => 52012 -5 + 5 = 5N => 52012 = 5N => N = 52011
\(A=5+5^2+5^3+...+5^{2011}\)
\(5A=\left(5+5^2+5^3+...+5^{2011}\right)\times5\)
\(5A=5^2+5^3+5^4+...+5^{2012}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{2012}\right)-\left(5+5^2+5^3+....+5^{2011}\right)\)
\(4A=\left(5^2+5^3+5^4+....+5^{2011}\right)-\left(5^2+5^3+5^4+....+5^{2011}\right)+\left(5^{2012}-5\right)\)
\(4A=0+\left(5^{2012}-5\right)=5^{2012}-5\)
\(\Rightarrow4A+5=5^{2012}\)hay \(5^n=5^{2012}\)
\(\Rightarrow n=2012\)
Ta có:
A=5+52+53+...+5100
5A=52+53+54+...+5101
4A=5A-A=(52+53+54+...+5101)-(5+52+53+...+5100)
4A=5101-5
4A+5=5101-5+5
4A+5=5101
=>n=101.
A = 5+52+53+.........+52011
5A = 52+53+54+.........+52011+52012
Lấy 5A - A
Ta co:5A=5^2+5^3+5^4+...+5^301
5A-A=4A=5^2+5^3+5^4+...+5^300-5^1+5^2+5^3+...+5^300
4A=5^300-5
4A+5=5^300
ở trên ta có :4A+5=5^n suy ra :n=300
c) 5A = 5^2 + 5^3 +....+5^97
5A - A = 5^97-5
A = (5^95 - 5)/4
d) 4A + 5 = 5^n -3
5^97 = 5^n -3
Nhận xét : 5^97 chia hết cho 5
5^n - 3 không chia hết cho 5
Suy ra ko có sộ tự nhiên n thỏa mãn
a) A = 5(5+1) + 5^3(5+1)+...+5^95(5+1)
A = 5.6 +5^3 . 6 +....+ 5^95.6
A = 6 . ( 5+ 5^3 + 5^5+....+5^95)
Suy ra A chia hết cho 6
b) Xét 5^1 + 5^3 + 5^5+....+5^95
Có: (95-1)/2 + 1 = 48 số hạng
Mà 5^1 , 5^3, 5^5,...., 5^95 đều có chữ số tận cùng = 5
Suy ra 5^1 + 5^3 +....+5^95 có chữ số tận cùng = 0
Vậy A có chữ số tận cùng là 0
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
A = 5+ 52 +53 + .......+ 5100
5A = 52 + 53 + 54 + ... + 5101
5A - A = ( 52 + 53 + 54 + ... + 5101 ) - ( 5+ 52 +53 + .......+ 5100 )
4A = 5101 - 5
suy ra 4A + 5 = 5101 - 5 + 5 = 5101
vậy n = 101
5A=\(5^2+5^3+...+5^{101}\)
4A=\(5^{101}-5\)
4A+5=\(5^{101}\)
ma 4A+5=\(5^x\)
suy ra x=101