Tìm x thuộc Z để biểu thức M=\(\frac{7-x}{x-2}\) có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{5-x}{x-2}=\frac{-x+2+3}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
Để M có GTNN
\(\Leftrightarrow\)x-2 có GTLN và x-2<0
\(\Rightarrow x-2=-1\)
\(\Rightarrow x=1\)
Vậy, M có GTNN là -4 khi x=1
CHÚC BẠN HỌC TỐT!!! :))
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
Ta có \(A=\frac{7-X}{X-5}=\frac{2-\left(X-5\right)}{X-5}=\frac{2}{X-5}-1\)
Để A nhỏ nhất thì \(\frac{2}{X-5}\)cũng phải nhỏ nhất
\(\Rightarrow x-5\) là số nguyên âm lớn nhất
\(\Rightarrow\) \(X-5=-1\Rightarrow x=-4\Rightarrow A=-3\)
A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)
A nhỏ nhất khi x - 7 = 3 => x = 10
A lơn nhất khi x - 7 = -3 => x = 4
M=(7-x)/(x-2)
=>M=5/(x-2)-(x-2)/(x-2)
=>M=5/(x-2)-1
Để M có giá trị nhỏ nhất thì 5/(x-2)là Số nguyên âm nhỏ nhất=>5/(2-x) là số nguyên dương lớn nhất=> 2-x là số nguyên dương nhỏ nhất
=>2-x=1=>x=2-1=1
Vậy x=1 thì M có giá trị nhỏ nhất=-6.
??? Mik thấy không tìm được M nhỏ nhất vì x càng lớn thỳ M càng nhỏ :
VD : Nếu x = 101 thì được M nhỏ hơn nếu x = 100
\(\frac{7-x}{x-2}=\frac{7-100}{100-2}=-\frac{93}{98}\)
và \(\frac{7-x}{x-2}=\frac{7-101}{101-2}=\frac{-94}{99}\)
Có : \(\frac{-94}{99}< \frac{-93}{98}\)