K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

gọi UCLN(2n+1,2n+3)=k

Ta có:

2n+1\(⋮\)k

2n+3\(⋮\)k

=>(2n+3)-(2n+1)\(⋮\)k

mik đang bận nên tẹp nữa làm tiếp

16 tháng 12 2017

gọi d là ƯCLN ( 2n + 1 , 2n + 3 )

\(\Rightarrow\)2n + 1 \(⋮\)d ; 2n + 3 \(⋮\)d

\(\Rightarrow\) ( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d

\(\Rightarrow\)\(⋮\)d

Mà 2n + 1 là số lẻ \(\Rightarrow\)d cũng là số lẻ \(\Rightarrow\)d = 1

Vậy ƯCLN ( 2n + 1 , 2n + 3 ) = 1

10 tháng 11 2017

a)Gọi ƯCLN(2n+1,2n+3) = d     (d thuộc N*)

=>2n+1 chia hết cho d và 2n+3 chia hết cho d

=>(2n+3)-(2n+1) chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)

Ta có: Ư(2)={1;2}

Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2

=>d=1

Vậy ƯCLN(2n+1,2n+3) = 1             (đpcm)

b)Gọi ƯCLN(2n+5,3n+7) = d         (d thuộc N*)

=>2n+5 chia hết cho d và 3n+7 chia hết cho d

=>6n+15 chia hết cho d và 6n+14 chia hết cho d 

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d thuộc Ư(1) =>d=1

Vậy ƯCLN(2n+5,3n+7) = 1             (đpcm)

14 tháng 11 2017

a) Đặt: ƯCLN(2n+1,2n+3) = d

Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d

\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d

\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d

\(\Leftrightarrow\)2\(⋮\)d

Vì 2n+3 ko chia hết cho 2

Nên 1\(⋮\)d

\(\Leftrightarrow\)d=1

Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)

b) Đặt ƯCLN( 2n+5,3n+7 ) = d

Ta có: 2n+5 \(⋮\)\(\Leftrightarrow\)3(2n+5) \(⋮\)d

                             \(\Leftrightarrow\)6n+15 \(⋮\)d

            3n+7\(⋮\)\(\Leftrightarrow\)2(3n+7) \(⋮\)d

                             \(\Leftrightarrow\)6n+14 \(⋮\)d

\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d

\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)

Kb vs mk nha

14 tháng 12 2020

Mình chỉ tạm thời trả lời câu c thôi:

+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                    (1)

+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                   (2)

 Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n

11 tháng 11 2019

Gọi \(d=ƯCLN\left(2n+1;2n+3\right)\)

\(\Rightarrow2n+1⋮d;2n+3⋮d\)

\(\Rightarrow2n+3-2n-1⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d=2\)

Mà \(2n+1;2n+3\) là các số lẻ nên \(d=1\)

=> đpcm

20 tháng 10 2015

1) Coi a< b

ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)

a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168

Vậy...

2) Gọi d = ƯCLN(2n + 2; 2n+ 3) 

=> 2n + 1 chia hết cho d; 2n +3  chia hết cho d

=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2

Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1

Vậy...

3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20

Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)

a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3

+) m = 1; n = 6 => a = 20; b = 120

+) m = 2; n = 3 => a = 40; b = 60

Vây,...

4) a chia hết cho b nên BCNN(a;b) = a = 18

=> b \(\in\)Ư(18) = {1;2;3;6;9;18}

vậy,,,

12 tháng 11 2016

khó quá không làm được

5 tháng 12 2018

Gọi ƯCLN ( 2n+1 ; 2n +3 ) = d 

Vì 2n +1 và 2n + 3 đều lẻ nên d lẻ

Ta có 2n + 1 \(⋮\)d

         2n + 3 \(⋮\)d

=> (2n+3) - (2n+1) \(⋮\)d

=> 2 \(⋮\)d

Mà d lẻ => d = 1

Vậy .........

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94